18 February 2021

❄️Systems Thinking: On Technology (Quotes)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems, and technology is the art of using these symbol systems so as to control and organize unique events. Scientific observation is always a viewing of things through the refracting medium of a symbol system, and technological praxis is always handling of things in ways that some symbol system has dictated. Education in science and technology is essentially education on the symbol level." (Aldous L Huxley, "Essay", Daedalus, 1962)

"Engineering is the art of skillful approximation; the practice of gamesmanship in the highest form. In the end it is a method broad enough to tame the unknown, a means of combing disciplined judgment with intuition, courage with responsibility, and scientific competence within the practical aspects of time, of cost, and of talent. This is the exciting view of modern-day engineering that a vigorous profession can insist be the theme for education and training of its youth. It is an outlook that generates its strength and its grandeur not in the discovery of facts but in their application; not in receiving, but in giving. It is an outlook that requires many tools of science and the ability to manipulate them intelligently In the end, it is a welding of theory and practice to build an early, strong, and useful result. Except as a valuable discipline of the mind, a formal education in technology is sterile until it is applied." (Ronald B Smith, "Professional Responsibility of Engineering", Mechanical Engineering Vol. 86 (1), 1964)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"It follows from this that man's most urgent and pre-emptive need is maximally to utilize cybernetic science and computer technology within a general systems framework, to build a meta-systemic reality which is now only dimly envisaged. Intelligent and purposeful application of rapidly developing telecommunications and teleprocessing technology should make possible a degree of worldwide value consensus heretofore unrealizable." (Richard F Ericson, "Visions of Cybernetic Organizations", 1972)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)

"Modern scientific principle has been drawn from the investigation of natural laws, technology has developed from the experience of doing, and the two have been combined by means of mathematical system to form what we call engineering." (George S Emmerson, "Engineering Education: A Social History", 1973)

"The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, self-cleansing. Not so with technology." (Ernst F Schumacher, "Small is Beautiful", 1973)

"People’s views of the world, of themselves, of their own capabilities, and of the tasks that they are asked to perform, or topics they are asked to learn, depend heavily on the conceptualizations that they bring to the task. In interacting with the environment, with others, and with the artifacts of technology, people form internal, mental models of themselves and of the things with which they are interacting. These models provide predictive and explanatory power for understanding the interaction." (Donald A Norman, "Some observations on Mental Models", 1983)

"With the changes in technological complexity, especially in information technology, the leadership task has changed. Leadership in a networked organization is a fundamentally different thing from leadership in a traditional hierarchy." (Edgar Schein, "Organizational Culture and Leadership", 1985)

"The new information technologies can be seen to drive societies toward increasingly dynamic high-energy regions further and further from thermodynamical equilibrium, characterized by decreasing specific entropy and increasingly dense free-energy flows, accessed and processed by more and more complex social, economic, and political structures." (Ervin László, "Information Technology and Social Change: An Evolutionary Systems Analysis", Behavioral Science 37, 1992) 

"Now that knowledge is taking the place of capital as the driving force in organizations worldwide, it is all too easy to confuse data with knowledge and information technology with information." (Peter Drucker, "Managing in a Time of Great Change", 1995)

"Commonly, the threats to strategy are seen to emanate from outside a company because of changes in technology or the behavior of competitors. Although external changes can be the problem, the greater threat to strategy often comes from within. A sound strategy is undermined by a misguided view of competition, by organizational failures, and, especially, by the desire to grow." (Michael E Porter, "What is Strategy?", Harvard Business Review, 1996)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty is the ultimate defense against complexity." (David Gelernter, "Machine Beauty: Elegance And The Heart Of Technolog", 1998)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Networks have existed in every economy. What’s different now is that networks, enhanced and multiplied by technology, penetrate our lives so deeply that 'network' has become the central metaphor around which our thinking and our economy are organized. Unless we can understand the distinctive logic of networks, we can’t profit from the economic transformation now under way." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The more interconnected a technology is, the more opportunities it spawns for both use and misuse. [… The law of plentitude is most accurately rendered thus: In a network, the more opportunities that are taken, the faster new opportunities arise." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"A primary reason that evolution - of life-forms or technology - speeds up is that it builds on its own increasing order." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"We do not learn much from looking at a model - we learn more from building the model and manipulating it. Just as one needs to use or observe the use of a hammer in order to really understand its function, similarly, models have to be used before they will give up their secrets. In this sense, they have the quality of a technology - the power of the model only becomes apparent in the context of its use." (Margaret Morrison & Mary S Morgan, "Models as mediating instruments", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"The business changes. The technology changes. The team changes. The team members change. The problem isn't change, per se, because change is going to happen; the problem, rather, is the inability to cope with change when it comes." (Kent Beck, Extreme Programming Explained, 2000)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits."  (Ray Kurzweil, "The Singularity is Near", 2005)

"The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations." (Ray Kurzweil, "The Singularity is Near", 2005)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Synergy occurs when organizational parts interact to produce a joint effect that is greater than the sum of the parts acting alone. As a result the organization may attain a special advantage with respect to cost, market power, technology, or employee." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The evolution of science and technology parallels the evolution of nature. The major technological transitions are also passages from one level of organization to another."(Kevin Kelly, "What Technology Wants", 2010) 

"What’s next for technology and design? A lot less thinking about technology for technology’s sake, and a lot more thinking about design. Art humanizes technology and makes it understandable. Design is needed to make sense of information overload. It is why art and design will rise in importance during this century as we try to make sense of all the possibilities that digital technology now affords." (John Maeda, "Why Apple Leads the Way in Design", 2010) 

"Today, technology has lowered the barrier for others to share their opinion about what we should be focusing on. It is not just information overload; it is opinion overload." (Greg McKeown, "Essentialism: The Disciplined Pursuit of Less", 2014)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...