"It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretched out his arms for others." (Carl F Gauss, [Letter to Farkas Bolyai] 1808)
"Scientific facts accumulate rapidly, and give rise to theories with almost equal rapidity. These theories are often wonderfully enticing, and one is apt to pass from one to another, from theory to theory, without taking care to establish each before passing on to the next, without assuring oneself that the foundation on which one is building is secure. Then comes the crash; the last theory breaks down utterly, and on attempting to retrace our steps to firm ground and start anew, we may find too late that one of the cards, possibly at the very foundation of the pagoda, is either faultily placed or in itself defective, and that this blemish easily remedied if detected in time has, neglected, caused the collapse of the whole structure on whose erection so much skill and perseverance have been spent." (Arthur M Marshall, 1894)
"The logic of things, i.e., of the material concepts and relations on which the structure of a science rests, cannot be separated by the logic of signs. For the sign is no mere accidental cloak of the idea, but its necessary and essential organ. It serves not merely to communicate a complete and given thought content, but is an instrument, by means of which this content develops and fully defines itself. […] Consequently, all truly strict and exact thought is sustained by the symbolic and semiotics on which it is based." (Ernst Cassirer, "The Philosophy of Symbolic Forms", 1923)
"A poem therefore is to be defined as a structure of words whose sound constitutes a rhythmical unity, complete in itself, irrefragable, unanalyzable, completing its symbolic references within the ambit of its sound effects." (Herbert Read, "What is a Poem", 1926)
"Written words differ from spoken words in being material structures. A spoken word is a process in the physical world, having an essential time-order; a written word is a series of pieces of matter, having an essential space-order." (Bertrand Russell, "An Outline of Philosophy", 1927)
"A scientific observation is always a committed observation. It confirms or denies one’s preconceptions, one’s first ideas, one’s plan of observation. It shows by demonstration. It structures the phenomenon. It transcends what is close at hand. It reconstructs the real after having reconstructed its representation." (Gaston Bachelard, "The New Scientific Spirit", 1934)
"[T]he sudden inventions characteristic of the sixth stage [of infant development] are in reality the product of a long evolution of schemata and not only of an internal maturation of perceptive structures. [..] This is revealed by the existence of a fifth stage, characterized by experimental groping. […] What does this mean if not that the practice of actual experience is necessary in order to acquire the practice of mental experience and that invention does not arise entirely preformed despite appearances? (Jean Piaget, "The origin of intelligence in children" 1936)
"Classes and concepts may, however, also be conceived as real objects, namely classes as 'pluralities of things' or as structures consisting of a plurality of things and concepts as the properties and relations of things existing independently of our definitions and constructions. It seems to me that the assumption of such objects is quite as legitimate as the assumption of physical bodies and there is quite as much reason to believe in their existence. They are in the same sense necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions." (Kurt Gödel, "The Philosophy of Bertrand Russell", 1944)
"Belief has its structures, and its symbols change. Its tradition changes. All the relationships within these forms are inter-dependent. We look at the symbols, we hope to read them, we hope for sharing and communication." (Muriel Rukeyser, "The Life of Poetry", 1949)
"Accommodation of mental structures to reality implies the existence of assimilatory schemata apart from which any structure would be impossible." (Jean Piaget, "The Construction Of Reality In The Child", 1950)
"Invention is not the product of logical thought, even though the final product is tied to a logical structure." (Albert Einstein, "Autobiographische Skizze", 1955)
"A logic machine is a device, electrical or mechanical, designed specifically for solving problems in formal logic. A logic diagram is a geometrical method for doing the same thing. […] A logic diagram is a two-dimensional geometric figure with spatial relations that are isomorphic with the structure of a logical statement. These spatial relations are usually of a topological character, which is not surprising in view of the fact that logic relations are the primitive relations underlying all deductive reasoning and topological properties are, in a sense, the most fundamental properties of spatial structures. Logic diagrams stand in the same relation to logical algebras as the graphs of curves stand in relation to their algebraic formulas; they are simply other ways of symbolizing the same basic structure." (Martin Gardner, "Logic Machines and Diagrams", 1958)
"If words are not things, or maps are not the actual territory, then, obviously, the only possible link between the objective world and the linguistic world is found in structure, and structure alone." (Alfred Korzybski, "Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics", 1958)
"Two important characteristics of maps should be noticed. A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness." (Alfred Korzybski, "Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics", 1958)
"Intuition implies the act of grasping the meaning or significance or structure of a problem without explicit reliance on the analytical apparatus of one’s craft. It is the intuitive mode that yields hypotheses quickly, that produces interesting combinations of ideas before their worth is known. It precedes proof: indeed, it is what the techniques of analysis and proof are designed to test and check. It is founded on a kind of combinatorial playfulness that is only possible when the consequences of error are not overpowering or sinful." (Jerome S Bruner, "On Learning Mathematics", Mathematics Teacher Vol. 53, 1960)
"The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1962)
"For Science in its totality, the ultimate goal is the creation of a monistic system in which - on the symbolic level and in terms of the inferred components of invisibility and intangibly fine structure - the world’s enormous multiplicity is reduced to something like unity, and the endless successions of unique events of a great many different kinds get tidied and simplified into a single rational order. Whether this goal will ever be reached remains to be seen. Meanwhile we have the various sciences, each with its own system coordinating concepts, its own criterion of explanation." (Aldous Huxley, "Literature and Science", 1963)
"This other world is the so-called physical world image; it is merely an intellectual structure. To a certain extent it is arbitrary. It is a kind of model or idealization created in order to avoid the inaccuracy inherent in every measurement and to facilitate exact definition." (Max Planck, "The Philosophy of Physics", 1963)
"[...] 'information' is not a substance or concrete entity but rather a relationship between sets or ensembles of structured variety." (Walter F Buckley, "Sociology and modern systems theory", 1967)
"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)
"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)
"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)
"Modern science is characterized by its ever-increasing specialization, necessitated by the enormous amount of data, the complexity of techniques and of theoretical structures within every field. Thus science is split into innumerable disciplines continually generating new subdisciplines. In consequence, the physicist, the biologist, the psychologist and the social scientist are, so to speak, encapusulated in their private universes, and it is difficult to get word from one cocoon to the other." (Ludwig von Bertalanffy, "General System Theory", 1968)
"Visual thinking calls, more broadly, for the ability to see visual shapes as images of the patterns of forces that underlie our existence - the functioning of minds, of bodies or machines, the structure of societies or ideas." (Rudolf Arnheim, "Visual Thinking", 1969)
"In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules […] representing general properties of the whole system of concepts. […] At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language." (Manfred Bierwisch, "Semantics", 1970)
"Mental models are fuzzy, incomplete, and imprecisely stated. Furthermore, within a single individual, mental models change with time, even during the flow of a single conversation. The human mind assembles a few relationships to fit the context of a discussion. As debate shifts, so do the mental models. Even when only a single topic is being discussed, each participant in a conversation employs a different mental model to interpret the subject. Fundamental assumptions differ but are never brought into the open. […] A mental model may be correct in structure and assumptions but, even so, the human mind - either individually or as a group consensus - is apt to draw the wrong implications for the future." (Jay W Forrester, "Counterintuitive Behaviour of Social Systems", Technology Review, 1971)
"The essential functions of the mind consist in understanding and in inventing, in other words, in building up structures by structuring reality." (Jean Piaget, 1971)
"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)
"Models are not intended to either reflect or construct a single objective reality. Rather, their purpose is to simulate some aspect of a possible reality. In NLP, for instance, it is not important whether or not a model is 'true' , but rather that it is 'useful' . In fact, all models can be perceived as symbolic or metaphoric, as opposed to reflective of reality. Whether the description being used is metaphorical or literal, the usefulness of a model depends on the degree to which it allows us to move effectively to the next step in the sequence of transformations connecting deeper structures and surface structures. Instead of 'constructing' reality, models establish a set of functions that serve as a tool or a bridge between deep structures and surface structures. It is this bridge that forms our 'understanding' of reality and allows us to generate new experiences and expressions of reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)
"The conception of the mental construction which is the fully analysed proof as being an infinite structure must, of course, be interpreted in the light of the intuitionist view that all infinity is potential infinity: the mental construction consists of a grasp of general principles according to which any finite segment of the proof could be explicitly constructed." (Michael Dummett, "The philosophical basis of intuitionistic logic", 1975)
"The most pervasive paradox of the human condition which we see is that the processes which allow us to survive, grow, change, and experience joy are the same processes which allow us to maintain an impoverished model of the world - our ability to manipulate symbols, that is, to create models. So the processes which allow us to accomplish the most extraordinary and unique human activities are the same processes which block our further growth if we commit the error of mistaking the model of the world for reality." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)
"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […] a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)
"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976])
"[…] semantic nets [are defined] as graphical analogues of data structures representing 'facts' in a computer system for understanding natural language." (Lenhart K Schubert," "Extending the Expressive Power of Semantic Networks", Artificial Intelligence 7, 1976)
"The branch of modern science called cybernetics gives us concepts that describe the evolutionary process at both the level of intracellular structures and the level of social phenomena. The fundamental unity of the evolutionary process at all levels of organization is transformed from a philosophical view to a scientifically substantiated fact." (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)
"We never have any understanding of any subject matter except in terms of our own mental constructs of 'things' and 'happenings' of that subject matter." (Douglas T Ross, "Structured analysis (SA): A language for communicating ideas", IEEE Transactions on Software Engineering Vol. 3 (1), 1977)
"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)
"The evolutionary vision is agnostic in regard to systems in the universe of greater complexity than those of which human beings have clear knowledge. It recognizes aesthetic, moral, and religious ideas and experiences as a species, in this case of mental structures or of images, which clearly interacts with other species in the world's great' ecosystem." (Kenneth Boulding," Ecodynamics: A New Theory of Societal Evolution", 1978)
"The use of metaphor is one of many devices available to the scientific community to accomplish the task of accommodation of language to the causal structure of the world." (Richard Boyd, "Metaphor and theory change: what is ‘metaphor’ a metaphor for?", 1979)
"A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the meaning of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept." (David E Rumelhart, "Schemata: The building blocks of cognition", 1980)
"These organizational processes result in our perceptions being structured into units corresponding to objects and properties of objects. It is these larger units that may be stored and later assembled into images that are experienced as quasi-pictorial, spatial entities resembling those evoked during perception itself [...] It is erroneous to equate image representations with mental photographs, since this would overlook the fact that images are composed from highly processed perceptual encodings." (Stephen Kosslyn, "Image and Mind", 1980)
"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)
"At present, no complete account can be given - one may as well ask for an inventory of the entire products of the human imagination - and indeed such an account would be premature, since mental models are supposed to be in people's heads, and their exact constitution is an empirical question. Nevertheless, there are three immediate constraints on possible models. […] 1. The principle of computability: Mental models, and the machinery for constructing and interpreting them, are computable. […] 2. The principle of finitism: A mental model must be finite in size and cannot directly represent an infinite domain. […] 3. The principle of constructivism: A mental model is constructed from tokens arranged in a particular structure to represent a state of affairs." (Philip Johnson-Laird, "Mental Models" 1983)
"Myth is the system of basic metaphors, images, and stories that in-forms the perceptions, memories, and aspirations of a people; provides the rationale for its institutions, rituals and power structure; and gives a map of the purpose and stages of life." (Sam Keen, "The Passionate Life", 1983)
"A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)
"Concepts are inventions of the human mind used to construct a model of the world. They package reality into discrete units for further processing, they support powerful mechanisms for doing logic, and they are indispensable for precise, extended chains of reasoning. […] A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)
"Curiously, the unexpected complexity that has been discovered in nature has not led to a slowdown in the progress of science, but on the contrary to the emergence of new conceptual structures that now appear as essential to our understanding of the physical world - the world that includes us. (Isabelle Stengers, "Order Out of Chaos", 1984)
"We define a semantic network as 'the collection of all the relationships that concepts have to other concepts, to percepts, to procedures, and to motor mechanisms' of the knowledge." (John F Sowa, "Conceptual Structures", 1984)
"The basic idea is that schemata are data structures for representing the generic concepts stored in memory. There are schemata for generalized concepts underlying objects, situations, events, sequences of events, actions, and sequences of actions. Roughly, schemata are like models of the outside world. To process information with the use of a schema is to determine which model best fits the incoming information. Ultimately, consistent configurations of schemata are discovered which, in concert, offer the best account for the input. This configuration of schemata together constitutes the interpretation of the input." (David E Rumelhart, Paul Smolensky, James L McClelland & Geoffrey E Hinton, "Schemata and sequential thought processes in PDP models", 1986)
"A mental model is a data structure, in a computational system, that represents a part of the real world or of a fictitious world. It is assumed that there can be mental models of abstract realms, such as that of mathematics, but little more will be said about them. A model-theoretic semanticist is free to think of the entities in his model as actual items in the world.[...] Mental model is an appropriate term for the mental representations that underlie everyday reasoning about the world. To understand the everyday world is to have a theory of how it works." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)
"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of. Through metaphor, we make use of patterns that obtain in our physical experience to organise our more abstract understanding." (Mark Johnson, "The Body in the Mind", 1987)
"The mapping from linguistic inputs to mental models is not a one-one mapping. So semantic properties of sentences may not be recoverable from a mental model. Reading or listening is typically for content not for form. People want to know what is being said to them, not how it is being said. [...] A mental model is a representation of the content of a text that need bear no resemblance to any of the text's linguistic representations. Its structure is similar to the situation described by the text." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)
"[…] a mental model is a mapping from a domain into a mental representation which contains the main characteristics of the domain; a model can be ‘run’ to generate explanations and expectations with respect to potential states. Mental models have been proposed in particular as the kind of knowledge structures that people use to understand a specific domain […]" (Helmut Jungermann, Holger Schütz & Manfred Thuering, "Mental models in risk assessment: Informing people about drugs", Risk Analysis 8 (1), 1988)
"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)
"A mental model is a knowledge structure that incorporates both declarative knowledge (e.g., device models) and procedural knowledge (e.g., procedures for determining distributions of voltages within a circuit), and a control structure that determines how the procedural and declarative knowledge are used in solving problems (e.g., mentally simulating the behavior of a circuit)." (Barbara Y White & John R Frederiksen, "Causal Model Progressions as a Foundation for Intelligent Learning Environments", Artificial Intelligence 42, 1990)
"The essential idea of semantic networks is that the graph-theoretic structure of relations and. abstractions can be used for inference as well as understanding. […] A semantic network is a discrete structure as is any linguistic description. Representation of the continuous 'outside world' with such a structure is necessarily incomplete, and requires decisions as to which information is kept and which is lost." (Fritz Lehman, "Semantic Networks", Computers & Mathematics with Applications Vol. 23 (2-5), 1992)
"The great organizing principle of thought is abstraction. By assigning particular things to abstract categories we are able to dispense with irrelevant detail and yet instantly draw copious conclusions about a thing due to its membership in various categories. Semantic networks specify the structure of interrelated abstract categories and use this structure to draw conclusions." (Fritz Lehman, "Semantic Networks", Computers & Mathematics with Applications Vol. 23 (2-5), 1992)
"A mental model is not normally based on formal definitions but rather on concrete properties that have been drawn from life experience. Mental models are typically analogs, and they comprise specific contents, but this does not necessarily restrict their power to deal with abstract concepts, as we will see. The important thing about mental models, especially in the context of mathematics, is the relations they represent. […] The essence of understanding a concept is to have a mental representation or mental model that faithfully reflects the structure of that concept. (Lyn D. English & Graeme S. Halford, "Mathematics Education: Models and Processes", 1995)
"The term mental model refers to knowledge structures utilized in the solving of problems. Mental models are causal and thus may be functionally defined in the sense that they allow a problem solver to engage in description, explanation, and prediction. Mental models may also be defined in a structural sense as consisting of objects, states that those objects exist in, and processes that are responsible for those objects’ changing states." (Robert Hafner & Jim Stewart, "Revising Explanatory Models to Accommodate Anomalous Genetic Phenomena: Problem Solving in the ‘Context of Discovery’", Science Education 79 (2), 1995)
"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)
"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)
"[Schemata are] knowledge structures that represent objects or events and provide default assumptions about their characteristics, relationships, and entailments under conditions of incomplete information." (Paul J DiMaggio, "Culture and Cognition", Annual Review of Sociology No. 23, 1997)
"[A mental model] is a relatively enduring and accessible, but limited, internal conceptual representation of an external system (historical, existing, or projected) [italics in original] whose structure is analogous to the perceived structure of that system." (James K Doyle & David N Ford, "Mental models concepts revisited: Some clarifications and a reply to Lane", System Dynamics Review 15 (4), 1999)
"[…] philosophical theories are structured by conceptual metaphors that constrain which inferences can be drawn within that philosophical theory. The (typically unconscious) conceptual metaphors that are constitutive of a philosophical theory have the causal effect of constraining how you can reason within that philosophical framework." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought", 1999)
"What it means for a mental model to be a structural analog is that it embodies a representation of the spatial and temporal relations among, and the causal structures connecting the events and entities depicted and whatever other information that is relevant to the problem-solving talks. […] The essential points are that a mental model can be nonlinguistic in form and the mental mechanisms are such that they can satisfy the model-building and simulative constraints necessary for the activity of mental modeling." (Nancy J Nersessian, "Model-based reasoning in conceptual change", 1999)
"[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)
"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)
"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)
"Representations of real or imaginary structure in the human mind enabling orientation as well as goal orientated actions and movements" (Ralf Wagner, "Customizing Multimedia with Multi-Trees" [in "Encyclopedia of Multimedia Technology and Networking" 2nd Ed.], 2009)
"A conceptual model of an interactive application is, in summary: the structure of the application - the objects and their operations, attributes, and relation-ships; an idealized view of the how the application works – the model designers hope users will internalize; the mechanism by which users accomplish the tasks the application is intended to support." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)
"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends. […] Patterns can be temporal, which is something that regularly occurs over time. Patterns can also be spatial, such as things being organized in a certain way. Patterns can be functional, in that doing certain things leads to certain effects. Good patterns are often symmetric. They echo basic structures and patterns that we are already aware of." (Anil K. Maheshwari, "Business Intelligence and Data Mining", 2015)
"Models are formal structures represented in mathematics and diagrams that help us to understand the world. Mastery of models improves your ability to reason, explain, design, communicate, act, predict, and explore." (Scott E Page, "The Model Thinker", 2018)
No comments:
Post a Comment