Showing posts with label growth. Show all posts
Showing posts with label growth. Show all posts

03 March 2021

❄️Systems Thinking: On Tipping Points (Quotes)

"But the world of the Tipping Point is a place where the unexpected becomes expected, where radical change is more than possibility. It is - contrary to all our expectations - a certainty." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"If the contact rate, infectivity, and duration of infection are small enough, the system is below the tipping point and stable. Such a situation is known as herd immunity because the arrival of an infected individual does not produce an epidemic (though a few unlucky individuals may come in contact with any infectious arrivals and contract the disease, the group as a community is protected). However, changes in the contact rate, infectivity, or duration of illness can push a system past the tipping point." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"In the real world, advertising is expensive and does not persist indefinitely. The marketing plan for most new products includes a certain amount for a kickoff ad campaign and other initial marketing efforts. If the product is successful, further advertising can be supported out of the revenues the product generates. If, however, the product does not take off, the marketing budget is soon exhausted and external sources of adoption fall. Advertising is not exogenous, as in the Bass model, but is part of the feedback structure of the system. There is a tipping point for ideas and new products no less than for diseases." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Simply by finding and reaching those few special people who hold so much social power, we can shape the course of social epidemics. In the end, Tipping Points are a reaffirmation of the potential for change and the power of intelligent action." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"The existence of the tipping point means it is theoretically possible to completely eradicate a disease. Eradication does not require a perfect vaccine and universal immunization but only the weaker condition that the reproduction rate of the disease fall and remain below one so that new cases arise at a lower rate than old cases are resolved." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world. ", 2000)

"The sharp boundary between an epidemic and stability defined by the tipping point in the deterministic models becomes a probability distribution characterizing the chance an epidemic will occur for any given average rates of interaction, infectivity, and recovery. Likewise, the SI and SIR models assume a homogeneous and well-mixed population, while in reality it is often important to represent subpopulations and the spatial diffusion of an epidemic." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The theory of Tipping Points requires, however, that we reframe the way we think about the world. [...] We have trouble estimating dramatic, exponential change. [...] There are abrupt limits to the number of cognitive categories we can make and the number of people we can truly love and the number of acquaintances we can truly know. We throw up our hands at a problem phrased in an abstract way, but have no difficulty at all solving the same problem rephrased as a social dilemma. All of these things are expressions of the peculiarities of the human mind and heart, a refutation of the notion that the way we function and communicate and process information is straightforward and transparent. It is not. It is messy and opaque." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"These three characteristics - one, contagiousness; two, the fact that little causes can have big effects; and three, that change happens not gradually but at one dramatic moment - are the same three principles that define how measles moves through a grade-school classroom or the flu attacks every winter. Of the three, the third trait - the idea that epidemics can rise or fall in one dramatic moment - is the most important, because it is the principle that makes sense of the first two and that permits the greatest insight into why modern change happens the way it does. The name given to that one dramatic moment in an epidemic when everything can change all at once is the Tipping Point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"This possibility of sudden change is at the center of the idea of the Tipping Point and might well be the hardest of all to accept. [...] The Tipping Point is the moment of critical mass, the threshold, the boiling point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"But in mathematics there is a kind of threshold effect, an intellectual tipping point. If a student can just get over the first few humps, negotiate the notational peculiarities of the subject, and grasp that the best way to make progress is to understand the ideas, not just learn them by rote, he or she can sail off merrily down the highway, heading for ever more abstruse and challenging ideas, while an only slightly duller student gets stuck at the geometry of isosceles triangles." (Ian Stewart, "Why Beauty is Truth: A history of symmetry", 2007)

"The product that first gets over its own tipping point attracts many consumers and this may make the competing product less attractive. Being the first to reach this tipping point is very important - more important than being the 'best' in an abstract sense." (David Easley & Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning about a Highly Connected World", 2010)

"Stochastic variability and tipping points in the catch are two different dynamical phenomena. Yet they are both compatible with real-world data [...]" (John D W Morecroft, "Strategic Modelling and Business Dynamics: A Feedback Systems Approach", 2015)

❄️Systems Thinking: On Epidemics/Pandemics (Quotes)

"[…] an epidemic does not always percolate through an entire population. There is a percolation threshold below which the epidemic has died out before most of the people have." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Epidemics are sensitive to the conditions and circumstances of the times and places in which they occur." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"Epidemics tip because of the extraordinary efforts of a few select carriers. But they also sometimes tip when something happens to transform the epidemic agent itself. This is a well-known principle in virology. The strains of flu that circulate at the beginning of each winter's flu epidemic are quite different from the strains of flu that circulate at the end." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"Epidemics are another example of geometric progression: when a virus spreads through a population, it doubles and doubles again, until it has (figuratively) grown from a single sheet of paper all the way to the sun in fifty steps. As human beings we have a hard time with this kind of progression, because the end result - the effect - seems far out of proportion to the cause. To appreciate the power of epidemics, we have to abandon this expectation about proportionality. We need to prepare ourselves for the possibility that sometimes big changes follow from small events, and that sometimes these changes can happen very quickly." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"It takes only the smallest of changes to shatter an epidemic's equilibrium. [...] There is more than one way to tip an epidemic, in other words. Epidemics are a function of the people who transmit infectious agents, the infectious agent itself, and the environment in which the infectious agent is operating. And when an epidemic tips, when it is jolted out of equilibrium, it tips because something has happened, some change has occurred in one (or two or three) of those areas. These three agents of change I call the Law of the Few, the Stickiness Factor, and the Power of Context."  (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"Simply by finding and reaching those few special people who hold so much social power, we can shape the course of social epidemics. In the end, Tipping Points are a reaffirmation of the potential for change and the power of intelligent action." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"That is the paradox of the epidemic: that in order to create one contagious movement, you often have to create many small movements first." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"The existence of the tipping point means it is theoretically possible to completely eradicate a disease. Eradication does not require a perfect vaccine and universal immunization but only the weaker condition that the reproduction rate of the disease fall and remain below one so that new cases arise at a lower rate than old cases are resolved." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"These three characteristics - one, contagiousness; two, the fact that little causes can have big effects; and three, that change happens not gradually but at one dramatic moment - are the same three principles that define how measles moves through a grade-school classroom or the flu attacks every winter. Of the three, the third trait - the idea that epidemics can rise or fall in one dramatic moment - is the most important, because it is the principle that makes sense of the first two and that permits the greatest insight into why modern change happens the way it does. The name given to that one dramatic moment in an epidemic when everything can change all at once is the Tipping Point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"This is the first lesson of the Tipping Point. Starting epidemics requires concentrating resources on a few key areas. The Law of the Few says that Connectors, Mavens, and Salesmen are responsible for starting word-of-mouth epidemics, which means that if you are interested in starting a word-of-mouth epidemic, your resources ought to be solely concentrated on those three groups." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"We often hear warnings that some social problem is 'epidemic'. This expression suggests that the problem's growth is rapid, widespread, and out of control. If things are getting worse, and particularly if they're getting worse fast, we need to act." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"In a complex society, individuals, organizations, and states require a high degree of confidence - even if it is misplaced - in the short-term future and a reasonable degree of confidence about the longer term. In its absence they could not commit themselves to decisions, investments, and policies. Like nudging the frame of a pinball machine to influence the path of the ball, we cope with the dilemma of uncertainty by doing what we can to make our expectations of the future self-fulfilling. We seek to control the social and physical worlds not only to make them more predictable but to reduce the likelihood of disruptive and damaging shocks (e.g., floods, epidemics, stock market crashes, foreign attacks). Our fallback strategy is denial." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

23 February 2021

❄️Systems Thinking: On Financial Markets (Quotes)

"There is a multilayering of global networks in the key strategic activities that structure and destructure the planet. When these multilayered networks overlap in some node, when there is a node that belongs to different networks, two major consequences follow. First, economies of synergy between these different networks take place in that node: between financial markets and media businesses; or between academic research and technology development and innovation; between politics and media." (Manuel Castells, "The Rise of the Network Society", 1996)

"A key conclusion stemming from our most recent crises is that economies cannot enjoy the advantages of a sophisticated international financial system without the internal discipline that enables such economies to adjust without crisis to changing circumstances." (Alan Greenspan, "The Structure of the International Financial System", 1998)

"Financial markets are supposed to swing like a pendulum: They may fluctuate wildly in response to exogenous shocks, but eventually they are supposed to come to rest at an equilibrium point and that point is supposed to be the same irrespective of the interim fluctuations." (George Soros, "The Crisis of Global Capitalism", 1998)

"It has become evident time and again that when events become too complex and move too rapidly as appears to be the case today, human beings become demonstrably less able to cope." (Alan Greenspan, "The Structure of the International Financial System", 1998)

"If financial markets aren't efficient, then what are they? According to the 'fractal market hypothesis', they are highly unstable dynamic systems that generate stock prices which appear random, but behind which lie deterministic patterns." (Steve Keen, "Debunking Economics: The Naked Emperor Of The Social Sciences", 2001)

"The long term solution to the financial crisis is to move beyond the ‘growth at all costs’ economic model to a model that recognizes the real costs and benefits of growth." (Robert Costanza, "Toward a New Sustainable Economy", 2008)

"There is common ground in analysing financial systems and ecosystems, especially in the need to identify conditions that dispose a system to be knocked from seeming stability into another, less happy state." (Robert M May et al, "Complex systems: Ecology for bankers" 2008)

"In a complex society, individuals, organizations, and states require a high degree of confidence - even if it is misplaced - in the short-term future and a reasonable degree of confidence about the longer term. In its absence they could not commit themselves to decisions, investments, and policies. Like nudging the frame of a pinball machine to influence the path of the ball, we cope with the dilemma of uncertainty by doing what we can to make our expectations of the future self-fulfilling. We seek to control the social and physical worlds not only to make them more predictable but to reduce the likelihood of disruptive and damaging shocks (e.g., floods, epidemics, stock market crashes, foreign attacks). Our fallback strategy is denial." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"[...] central banking has been transformed, in practice and in theory [...] The list of assumptions that turned out to be false is lengthy: that the financial system would be self-stabilising, that managers of banks would prove competent, that financial innovation would improve risk management, that low and stable inflation would guarantee economic stability. We have witnessed a bonfire of the verities [...]" (Martin Wolf, The Financial Times, 2012)

"Economists should study financial markets as they actually operate, not as they assume them to operate - observing the way in which information is actually processed, observing the serial correlations, bonanzas, and sudden stops, not assuming these away as noise around the edges of efficient and rational markets." (Adair Turner, "Economics after the Crisis: Objectives and means", 2012)

"Policymakers are now beginning to develop quantitative models of systemic risk that explicitly measure losses to the financial system that result from low probability scenarios. These models trace shocks through bank balance sheets and allow for macrocredit risk, network interactions between institutions, and feedback effects arising on both the asset and liability side of the balance sheet." (Prasanna Gai, "Systemic Risk: The Dynamics of Modern Financial Systems", 2013)

❄️Systems Thinking: On Economic Systems (Quotes)

"The usefulness of observation and measurement in testing economic theories arises because the theorems of economics are supposed to relate to the actual world. [...] Any economic theorem rigorously deduced from given postulates may be regarded as a hypothesis about the actual world which experience may show to be false." (Richard Stone, "The Role of Measurement in Economics", 1951)

"An economic system is not a linear system, and [...] this fact stands in the way of the determination of the parameters of the system by methods that presume linearity, and [...] it introduces great difficulties in the extrapolation from past behaviour for purposes of prediction. [...] Actual economic systems are constantly subjected to change and disturbances, which would result in irregularity." (Arnold Tustin, "The Mechanism of Economic System", 1953)

"Dynamic theory [...] shows how certain changes in the variables can be explained on the basis of [...] structural characteristics of the system. [...] The economy, of course, does not necessarily find an equilibrium position." (Wassily Leontief, "Studies in the Structure of the American Economy", 1953)

"The analysis of engineering systems and the understanding of economic structure have advanced since then, and the time is now more ripe to bring these topics into a potentially fruitful marriage." (Arnold Tustin, "The Mechanism of Economic Systems", 1953)

"The striking parallel between the economic models that are currently under discussion and some engineering systems suggests the hope that in some way the rapid progress in the development of the theory and practice of automatic control in the world of engineering may contribute to the solution of the economic problems." (Arnold Tustin, "The Mechanism of Economic Systems", 1953) 

"The ability to work with systems of general equilibrium is perhaps one of the most important skills of the economist - a skill which he shares with many other scientists, but in which he has perhaps a certain comparative advantage." (Kenneth Boulding, "The Skills of the Economist", Journal of Political Economy 67 (1), 1959)

"The treatment of the economy as a single system, to be controlled toward a consistent goal, allowed the efficient systematization of enormous information material, its deep analysis for valid decision-making. It is interesting that many inferences remain valid even in cases when this consistent goal could not be formulated, either for the reason that it was not quite clear or for the reason that it was made up of multiple goals, each of which to be taken into account." (Leonid V Kantorovich, "Mathematics in Economics: Achievements, Difficulties, Perspectives", [Nobel lecture] 1975)

"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella Meadows, "Whole Earth Models and Systems", 1982)

"When it comes to very highly organized systems, such as a living cell, the task of modeling by approximation to simple, continuous and smoothly varying quantities is hopeless. It is for this reason that attempts by sociologists and economists to imitate physicists and describe their subject matter by simple mathematical equations is rarely convincing." (Paul C W Davies, "The Cosmic Blueprint: New Discoveries in Nature’s Creative Ability to Order the Universe", 1987)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"In many parts of the economy, stabilizing forces appear not to operate. Instead, positive feedback magnifies the effects of small economic shifts; the economic models that describe such effects differ vastly from the conventional ones. Diminishing returns imply a single equilibrium point for the economy, but positive feedback - increasing returns - makes for many possible equilibrium points. There is no guarantee that the particular economic outcome selected from among the many alternatives will be the 'best' one." (W Brian Arthur, "Increasing Returns and Path Dependence in the Economy", 1994)

"We need to abandon the economist's notion of the economy as a machine, with its attendant concept of equilibrium. A more helpful way of thinking about the economy is to imagine it as a living organism." (Paul Ormerod, "The Death of Economics", 1994)

"A major clash between economics and ecology derives from the fact that nature is cyclical, whereas our industrial systems are linear. Our businesses take resources, transform them into products plus waste, and sell the products to consumers, who discard more waste […]" (Fritjof Capra, "The Web of Life", 1996)

"Optimization by individual agents, often used to derive competitive equilibria, are unnecessary for an actual economy to approximately attain such equilibria. From the failure of humans to optimize in complex tasks, one need not conclude that the equilibria derived from the competitive model are descriptively irrelevant. We show that even in complex economic systems, such equilibria can be attained under a range of surprisingly weak assumptions about agent behavior." (Antoni Bosch-Domènech & Shyam Sunder, "Tracking the Invisible Hand", 2000)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The diversity of networks in business and the economy is mindboggling. There are policy networks, ownership networks, collaboration networks, organizational networks, network marketing-you name it. It would be impossible to integrate these diverse interactions into a single all-encompassing web. Yet no matter what organizational level we look at, the same robust and universal laws that govern nature's webs seem to greet us. The challenge is for economic and network research alike to put these laws into practice."  (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"Standard economists don't seem to understand exponential growth. Ecological economics recognizes that the economy, like any other subsystem on the planet, cannot grow forever. And if you think of an organism as an analogy, organisms grow for a period and then they stop growing. They can still continue to improve and develop, but without physically growing, because if organisms did that you’d end up with nine-billion-ton hamsters." (Robert Costanza, "What is Ecological economics", 2010)

"The laws of thermodynamics tell us something quite different. Economic activity is merely borrowing low-entropy energy inputs from the environment and transforming them into temporary products and services of value. In the transformation process, often more energy is expended and lost to the environment than is embedded in the particular good or service being produced." (Jeremy Rifkin, "The Third Industrial Revolution", 2011)

"Defining an indicator as lagging, coincident, or leading is connected to another vital notion: the business cycle. Indicators are lagging or leading based on where economists believe we are in the business cycle: whether we are heading into a recession or emerging from one." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"[…] economics is a profession grounded in the belief that 'the economy' is a machine and a closed system. The more clearly that machine is understood, the more its variables are precisely measured, the more we will be able to manage and steer it as we choose, avoiding the frenetic expansions and sharp contractions. With better indicators would come better policy, and with better policy, states would be less likely to fall into depression and risk collapse." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"The concept that an economy (1) is characterized by regular cycles that (2) follow familiar patterns (3) illuminated by a series of statistics that (4) determine where we are in that cycle has become part and parcel of how we view the world." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

18 February 2021

❄️Systems Thinking: On Technology (Quotes)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems, and technology is the art of using these symbol systems so as to control and organize unique events. Scientific observation is always a viewing of things through the refracting medium of a symbol system, and technological praxis is always handling of things in ways that some symbol system has dictated. Education in science and technology is essentially education on the symbol level." (Aldous L Huxley, "Essay", Daedalus, 1962)

"Engineering is the art of skillful approximation; the practice of gamesmanship in the highest form. In the end it is a method broad enough to tame the unknown, a means of combing disciplined judgment with intuition, courage with responsibility, and scientific competence within the practical aspects of time, of cost, and of talent. This is the exciting view of modern-day engineering that a vigorous profession can insist be the theme for education and training of its youth. It is an outlook that generates its strength and its grandeur not in the discovery of facts but in their application; not in receiving, but in giving. It is an outlook that requires many tools of science and the ability to manipulate them intelligently In the end, it is a welding of theory and practice to build an early, strong, and useful result. Except as a valuable discipline of the mind, a formal education in technology is sterile until it is applied." (Ronald B Smith, "Professional Responsibility of Engineering", Mechanical Engineering Vol. 86 (1), 1964)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"It follows from this that man's most urgent and pre-emptive need is maximally to utilize cybernetic science and computer technology within a general systems framework, to build a meta-systemic reality which is now only dimly envisaged. Intelligent and purposeful application of rapidly developing telecommunications and teleprocessing technology should make possible a degree of worldwide value consensus heretofore unrealizable." (Richard F Ericson, "Visions of Cybernetic Organizations", 1972)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)

"Modern scientific principle has been drawn from the investigation of natural laws, technology has developed from the experience of doing, and the two have been combined by means of mathematical system to form what we call engineering." (George S Emmerson, "Engineering Education: A Social History", 1973)

"The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, self-cleansing. Not so with technology." (Ernst F Schumacher, "Small is Beautiful", 1973)

"People’s views of the world, of themselves, of their own capabilities, and of the tasks that they are asked to perform, or topics they are asked to learn, depend heavily on the conceptualizations that they bring to the task. In interacting with the environment, with others, and with the artifacts of technology, people form internal, mental models of themselves and of the things with which they are interacting. These models provide predictive and explanatory power for understanding the interaction." (Donald A Norman, "Some observations on Mental Models", 1983)

"With the changes in technological complexity, especially in information technology, the leadership task has changed. Leadership in a networked organization is a fundamentally different thing from leadership in a traditional hierarchy." (Edgar Schein, "Organizational Culture and Leadership", 1985)

"The new information technologies can be seen to drive societies toward increasingly dynamic high-energy regions further and further from thermodynamical equilibrium, characterized by decreasing specific entropy and increasingly dense free-energy flows, accessed and processed by more and more complex social, economic, and political structures." (Ervin László, "Information Technology and Social Change: An Evolutionary Systems Analysis", Behavioral Science 37, 1992) 

"Now that knowledge is taking the place of capital as the driving force in organizations worldwide, it is all too easy to confuse data with knowledge and information technology with information." (Peter Drucker, "Managing in a Time of Great Change", 1995)

"Commonly, the threats to strategy are seen to emanate from outside a company because of changes in technology or the behavior of competitors. Although external changes can be the problem, the greater threat to strategy often comes from within. A sound strategy is undermined by a misguided view of competition, by organizational failures, and, especially, by the desire to grow." (Michael E Porter, "What is Strategy?", Harvard Business Review, 1996)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty is the ultimate defense against complexity." (David Gelernter, "Machine Beauty: Elegance And The Heart Of Technolog", 1998)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Networks have existed in every economy. What’s different now is that networks, enhanced and multiplied by technology, penetrate our lives so deeply that 'network' has become the central metaphor around which our thinking and our economy are organized. Unless we can understand the distinctive logic of networks, we can’t profit from the economic transformation now under way." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"The more interconnected a technology is, the more opportunities it spawns for both use and misuse. [… The law of plentitude is most accurately rendered thus: In a network, the more opportunities that are taken, the faster new opportunities arise." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"A primary reason that evolution - of life-forms or technology - speeds up is that it builds on its own increasing order." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"We do not learn much from looking at a model - we learn more from building the model and manipulating it. Just as one needs to use or observe the use of a hammer in order to really understand its function, similarly, models have to be used before they will give up their secrets. In this sense, they have the quality of a technology - the power of the model only becomes apparent in the context of its use." (Margaret Morrison & Mary S Morgan, "Models as mediating instruments", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"The business changes. The technology changes. The team changes. The team members change. The problem isn't change, per se, because change is going to happen; the problem, rather, is the inability to cope with change when it comes." (Kent Beck, Extreme Programming Explained, 2000)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits."  (Ray Kurzweil, "The Singularity is Near", 2005)

"The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations." (Ray Kurzweil, "The Singularity is Near", 2005)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Synergy occurs when organizational parts interact to produce a joint effect that is greater than the sum of the parts acting alone. As a result the organization may attain a special advantage with respect to cost, market power, technology, or employee." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The evolution of science and technology parallels the evolution of nature. The major technological transitions are also passages from one level of organization to another."(Kevin Kelly, "What Technology Wants", 2010) 

"What’s next for technology and design? A lot less thinking about technology for technology’s sake, and a lot more thinking about design. Art humanizes technology and makes it understandable. Design is needed to make sense of information overload. It is why art and design will rise in importance during this century as we try to make sense of all the possibilities that digital technology now affords." (John Maeda, "Why Apple Leads the Way in Design", 2010) 

"Today, technology has lowered the barrier for others to share their opinion about what we should be focusing on. It is not just information overload; it is opinion overload." (Greg McKeown, "Essentialism: The Disciplined Pursuit of Less", 2014)

20 December 2020

❄️Systems Thinking: On Nonlinearity vs. Linearity (Quotes)

"Any organism must be treated as-a-whole; in other words, that an organism is not an algebraic sum, a linear function of its elements, but always more than that. It is seemingly little realized, at present, that this simple and innocent-looking statement involves a full structural revision of our language […]" (Alfred Korzybski, "Science and Sanity", 1933)

"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals - such were its abstract characteristics." (Herbert E Read, "Icon and Idea", 1955)

"Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states. Systems with bounded solutions are shown to possess bounded numerical solutions. (Edward N Lorenz, "Deterministic Nonperiodic Flow", Journal of the Atmospheric Science 20, 1963)

"Up until now most economists have concerned themselves with linear systems, not because of any belief that the facts were so simple, but rather because of the mathematical difficulties involved in nonlinear systems [... Linear systems are] mathematically simple, and exact solutions are known. But a high price is paid for this simplicity in terms of special assumptions which must be made." (Paul A Samuelson, "Foundations of Economic Analysis", 1966)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium. " (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"A nonlinear relationship causes the feedback loop of which it is a part to vary in strength, depending on the state of the system. Linked nonlinear feedback loops thus form patterns of shifting loop dominance- under some conditions one part of the system is very active, and under other conditions another set of relationships takes control and shifts the entire system behavior. A model composed of several feedback loops linked nonlinearly can produce a wide variety of complex behavior patterns." (Jørgen Randers, "Elements of the System Dynamics Method", 1980)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again - the pieces add up. Nonlinear systems generally cannot be solved and cannot be added together. [...] Nonlinearity means that the act of playing the game has a way of changing the rules. [...] That twisted changeability makes nonlinearity hard to calculate, but it also creates rich kinds of behavior that never occur in linear systems." (James Gleick, "Chaos: Making a New Science", 1987)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"It is sometimes said that the great discovery of the nineteenth century was that the equations of nature were linear, and the great discovery of the twentieth century is that they are not." (Thomas W Körner, "Fourier Analysis", 1988)

"Never in the annals of science and engineering has there been a phenomenon so ubiquitous‚ a paradigm so universal‚ or a discipline so multidisciplinary as that of chaos. Yet chaos represents only the tip of an awesome iceberg‚ for beneath it lies a much finer structure of immense complexity‚ a geometric labyrinth of endless convolutions‚ and a surreal landscape of enchanting beauty. The bedrock which anchors these local and global bifurcation terrains is the omnipresent nonlinearity that was once wantonly linearized by the engineers and applied scientists of yore‚ thereby forfeiting their only chance to grapple with reality." (Leon O Chua, "Editorial", International Journal of Bifurcation and Chaos, Vol. l (1), 1991) 

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Just as few concrete physical systems are strictly deterministic in their behavior, so very few are strictly linear. The great importance of linearity lies in a combination of two circumstances. First, many tangible phenomena behave approximately linearly over restricted periods of time or restricted ranges of the variables, so that useful linear mathematical models can simulate their behavior. A pendulum swinging through a small angle is a nearly linear system. Second, linear equations can be handled by a wide variety of techniques that do not work with nonlinear equations." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Scientists try to make things simple. That is in good part why we are stuck with bivalence. Scientists' first instinct is to fit a linear model to a nonlinear world. This creates another mismatch problem, the math modeler's dilemma: linear math, nonlinear world." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: 1. Information processing occurs at many simple elements called neurons. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"When it comes to modeling processes that are manifestly governed by nonlinear relationships among the system components, we can appeal to the same general idea. Calculus tells us that we should expect most systems to be 'locally' flat; that is, locally linear. So a conservative modeler would try to extend the word 'local' to hold for the region of interest and would take this extension seriously until it was shown to be no longer valid." (John L Casti, "Five Golden Rules", 1995)

"When we examine the modeling literature, its most striking aspect is the predominance of 'flat' linear models. Why is this the case? After all, from a singularity theory viewpoint these linear objects are mathematical rarities. On mathematical grounds we should certainly not expect to see them put forth as credible representations of reality. Yet they are. And the reason is simple: linearity is a neutral assumption that leads to mathematically tractable models. So unless there is good reason to do otherwise, why not use a linear model?"  (John L Casti, "Five Golden Rules", 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"Today the network of relationships linking the human race to itself and to the rest of the biosphere is so complex that all aspects affect all others to an extraordinary degree. Someone should be studying the whole system, however crudely that has to be done, because no gluing together of partial studies of a complex nonlinear system can give a good idea of the behaviour of the whole." (Murray Gell-Mann, 1997)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems."  (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The mental models people use to guide their decisions are dynamically deficient. […] people generally adopt an event-based, open-loop view of causality, ignore feedback processes, fail to appreciate time delays between action and response and in the reporting of information, do not understand stocks and flows and are insensitive to nonlinearities that may alter the strengths of different feedback loops as a system evolves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"In a linear system a tiny push produces a small effect, so that cause and effect are always proportional to each other. If one plotted on a graph the cause against the effect, the result would be a straight line. In nonlinear systems, however, a small push may produce a small effect, a slightly larger push produces a proportionately larger effect, but increase that push by a hair’s breadth and suddenly the system does something radically different." (F David Peat, "From Certainty to Uncertainty", 2002)

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Linearity means that the rule that determines what a piece of a system is going to do next is not influenced by what it is doing now. More precisely, this is intended in a differential or incremental sense: For a linear spring, the increase of its tension is proportional to the increment whereby it is stretched, with the ratio of these increments exactly independent of how much it has already been stretched. Such a spring can be stretched arbitrarily far, and in particular will never snap or break. Accordingly, no real spring is linear." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"A network of many simple processors ('units' or 'neurons') that imitates a biological neural network. The units are connected by unidirectional communication channels, which carry numeric data. Neural networks can be trained to find nonlinear relationships in data, and are used in various applications such as robotics, speech recognition, signal processing, medical diagnosis, or power systems." (Adnan Khashman et al, "Voltage Instability Detection Using Neural Networks", 2009)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Linearity is a reductionist’s dream, and nonlinearity can sometimes be a reductionist’s nightmare. Understanding the distinction between linearity and nonlinearity is very important and worthwhile." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complexity is a relative term. It depends on the number and the nature of interactions among the variables involved. Open loop systems with linear, independent variables are considered simpler than interdependent variables forming nonlinear closed loops with a delayed response." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Nature's tendency for iteration, pattern formation, and creation of order out of chaos creates expectations of predictability. It seems, however, that nature, because of varying degrees of interaction between chance and choice, and the nonlinearity of systems, escapes the boredom of predictability." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Remember that to map the dynamic behavior of a system is to capture the interaction of positive and negative feedback loops. These interactions, in essence, define the interdependencies, which in turn are responsible for nonlinearity in the system. It is the interdependency that poses the major challenge to our cognitive abilities. It is this challenge that we need to overcome by using operational modeling. Pattern recognition is critical for understanding and changing undesirable behavior. This leads us to the need for development of interactive operational representation of the phenomenon under investigation." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Complex systems are full of interdependencies - hard to detect - and nonlinear responses." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Where simplifications fail, causing the most damage, is when something nonlinear is simplified with the linear as a substitute. That is the most common Procrustean bed." (Nassim N Taleb, "Antifragile: Things that Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity."(Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

16 December 2020

❄️Systems Thinking: On Systems Thinking (Quotes)

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov, "Tektologia: Vseobshchaya Organizatsionnaya Nauka" ["Tektology: The Universal Organizational Science"], 1922)

"Creative evolution synthesises from the parts a new entity not only different from them, but quite transcending them. That is the essence of a whole. It is always transcendent to its parts, and its character cannot be inferred from the characters of its parts." (Jan Smuts, "Holism and Evolution", 1926)

"[Holism is] the tendency in nature to form wholes that are greater than the sum of the parts through creative evolution […]" (Jan Smuts, "Holism and Evolution", 1926)

"An ecological approach to public administration builds, then, quite literally from the ground up; from the elements of a place - soils, climate, location, for example - to the people who live there - their numbers and ages and knowledge, and the ways of physical and social technology by which from the place and in relationships with one another, they get their living. It is within this setting that their instruments and practices of public housekeeping should be studied so that they may better understand what they are doing, and appraise reasonably how they are doing it. Such an approach is of particular interest to us as students seeking to co-operate in our studies; for it invites - indeed is dependent upon - careful observation by many people in different environments of the roots of government functions, civic attitudes, and operating problems." (John Merriman Gaus, "Reflections on public administration", 1947)

"A systems approach begins when first you see the world through the eyes of another." (C West Churchman, "The Systems Approach", 1968)

"The parallelism of general conceptions or even special laws in different fields therefore is a consequence of the fact that these are concerned with 'systems' and that certain general principles apply to systems irrespective of their nature. Hence principles such as those of wholeness and sum, mechanization, hierarchic order, approached to steady states, equifinality, etc., may appear in quite different disciplines. The isomorphism found in different realms is based of the existence of general system principles, of a more or less well-developed ‘general system theory’." (Ludwig von Bertalanffy, "General System Theory", 1968)

"We may state as characteristic of modern science that this scheme of isolable units acting in one-way causality has proven to be insufficient. Hence the appearance, in all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc., which all signify that, in the last resort, we must think in terms of systems of elements in mutual interaction […]." (Ludwig von Bertalanffy, "General System Theory", 1968)

"In the selection of papers for this volume, two problems have arisen, namely what constitutes systems thinking and what systems thinking is relevant to the thinking required for organizational management. The first problem is obviously critical. Unless there were a meaningful answer there would be no sense in producing a volume of readings in systems thinking in any subject. A great many writers have manifestly believed that there is a way of considering phenomena which is sufficiently different from the well-established modes of scientific analysis to deserve the particular title of systems thinking." (Frederick E Emery (ed.),"Systems thinking: selected readings", 1969)

"There are different levels of organization in the occurrence of events. You cannot explain the events of one level in terms of the events of another. For example, you cannot explain life in terms of mechanical concepts, nor society in terms of individual psychology. Analysis can only take you down the scale of organization. It cannot reveal the workings of things on a higher level. To some extent the holistic philosophers are right." (Anatol Rapoport, "General Systems" Vol. 14, 1969) 

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships."(Ervin László, "Introduction to Systems Philosophy", 1972) 

“The notion of ‘system’ has gained central importance in contemporary science, society and life. In many fields of endeavor, the necessity of a ‘systems approach’ or ‘systems thinking’ is emphasized, new professions called ‘systems engineering’, ‘systems analysis’ and the like have come into being, and there can be little doubt that this this concept marks a genuine, necessary, and consequential development in science and world-view.” (Ervin László, “Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought”, 1972)

"A company is a multidimensional system capable of growth, expansion, and self-regulation. It is, therefore, not a thing but a set of interacting forces. Any theory of organization must be capable of reflecting a company's many facets, its dynamism, and its basic orderliness. When company organization is reviewed, or when reorganizing a company, it must be looked upon as a whole, as a total system." (Albert Low, "Zen and Creative Management", 1976)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Holism traditionally says that a collection of beings may have a collective property that cannot be inferred from the properties of its members." (C West Churchman, "The Systems Approach and Its Enemies" , 1979) 

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987)

"Systems thinking is a framework of thought that helps us to deal with complex things in a holistic way. The formalization of (giving an explicit, definite, and conventional form to) this thinking is what we have termed systems theory." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990) 

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry.” (Béla H. Bánáthy, "Systems Design of Education”, 1991)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem [...] create a shared social reality […] a shared understanding of the problem and potential solutions [...] to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"One of the strongest benefits of the systems thinking perspective is that it can help you learn to ask the right questions. This is an important first step toward understanding a problem. […] Much of the value of systems thinking comes from the different framework that it gives us for looking at problems in new ways." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"Systems thinking is most effective when it’s used to look at a problem in a new way, not to advocate a predetermined solution. Strong advocacy will create resistance - both to your ideas, and to systems thinking itself. Present systems thinking in the spirit of inquiry, not inquisition." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"[Systems thinking is] A new way to view and mentally frame what we see in the world; a worldview and way of thinking whereby we see the entity or unit first as a whole, with its fit and relationship to its environment as primary concerns." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"The beauty of this [systems thinking] mindset is that its mental models are based on natural laws, principles of interrelationship, and interdependence found in all living systems. They give us a new view of ourselves and our many systems, from the tiniest cell to the entire earth; and as our organizations are included in that great range, they help us define organizational problems as systems problems, so we can respond in more productive ways. The systems thinking mindset is a new orientation to life. In many ways it also operates as a worldview - an overall perspective on, and understanding of, the world." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"The Systems Thinking Approach is an absolute necessity to make sense of and succeed in today’s complex world." (Stephen G Haines, 1998)

 "[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"Systems thinking practices the exact opposite of this analytic approach. Systems thinking studies the organization as a whole in its interaction with its environment. Then, it works backwards to understand how each part of that whole works in relation to, and support of, the entire system’s objectives. Only then can the core strategies be formulated. (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems, and organizations as systems, can only be understood holistically. Try to understand the system and its environment first. Organizations are open systems and, as such, are viable only in interaction with and adaptation to the changing environment." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"As a meta-discipline, systems science will transfer its content from discipline to discipline and address problems beyond conventional reductionist boundaries. Generalists, qualified to manage today’s problem better than the specialist, could be fostered. With these intentions, systems thinking and systems science should not replace but add, complement and integrate those aspects that seem not to be adequately treated by traditional science." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Systems thinking expands the focus of the observer, whereas analytical thinking reduces it. In other words, analysis looks into things, synthesis looks out of them. This attitude of systems thinking is often called expansionism, an alternative to classic reductionism. Whereas analytical thinking concentrates on static and structural properties, systems thinking concentrates on the function and behaviour of whole systems. Analysis gives description and knowledge; systems thinking gives explanation and understanding." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Michael C Jackson, "Systems Thinking: Creative Holism for Manager", 2003) 

"System Thinking is a common concept for understanding how causal relationships and feedbacks work in an everyday problem. Understanding a cause and an effect enables us to analyse, sort out and explain how changes come about both temporarily and spatially in common problems. This is referred to as mental modelling, i.e. to explicitly map the understanding of the problem and making it transparent and visible for others through Causal Loop Diagrams (CLD)." (Hördur V. Haraldsson, "Introduction to System Thinking and Causal Loop Diagrams", 2004)

"Systems thinking is only an epistemology, a particular way of describing the world. It does not tell us what the world is. Hence, strictly speaking, we should never say of something in the world: ‘It is a system’, only: ‘It may be described as a system.’" (John Mingers, Realising" Systems Thinking: Knowledge and Action in Management Science", 2006)

"At a time when the world is more messy, more crowded, more interconnected, more interdependent, and more rapidly changing than ever before, the more ways of seeing, the better. The systems-thinking lens allows us to reclaim our intuition about whole systems and hone our abilities to understand parts, see interconnections, ask 'what-if' questions about possible future behaviors, and be creative and courageous about system redesign. (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008) 

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience" , 2008)

"Understanding interdependency requires a way of thinking different from analysis. It requires systems thinking. And analytical thinking and systems thinking are quite distinct. [...] Systems thinking is the art of simplifying complexity. It is about seeing through chaos, managing interdependency, and understanding choice. We see the world as increasingly more complex and chaotic because we use inadequate concepts to explain it. When we understand something, we no longer see it as chaotic or complex." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture", 2011)

"Systems thinking is a discipline or process that considers how individual elements interact with one another as part of a whole entity. As an approach to solving problems, systems thinking uses relationships among individual elements and the dynamics of these relationships to explain the behavior of systems such as an ecosystem, social system, or organization." (Karen L Higgins, "Economic Growth and Sustainability: Systems Thinking for a Complex World", 2015)

"Holism [is] the art - in contrast with reductionism - of seeing a complex system as a whole. Holism knows the limits to its understanding; it acknowledges that the system has its wildness, its privacy, its own reasons, its defenses against invasive explanation." (David Fleming, "Lean Logic", 2016)

"Systems thinking focuses on optimizing for the whole, looking at the overall flow of work, identifying what the largest bottleneck is today, and eliminating it." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

Related Posts Plugin for WordPress, Blogger...