14 May 2021

🦋Science: On Certainty (Quotes)

"Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth, unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", cca. 1267)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

"All effects follow not with like certainty from their supposed causes." (David Hume, "An Enquiry Concerning Human Understanding", 1748)

"As mathematical and absolute certainty is seldom to be attained in human affairs, reason and public utility require that judges and all mankind in forming their opinions of the truth of facts should be regulated by the superior number of the probabilities on the one side or the other whether the amount of these probabilities be expressed in words and arguments or by figures and numbers." (William Murray, 1773) 

"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)

"The orbits of certainties touch one another; but in the interstices there is room enough for error to go forth and prevail." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833)

"All certainty which does not consist in mathematical demonstration is nothing more than the highest probability; there is no other historical certainty." (Voltaire, "A Philosophical Dictionary", 1881)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"Sometimes the probability in favor of a generalization is enormous, but the infinite probability of certainty is never reached." (William Dampier-Whetham, "Science and the Human Mind", 1912)

"No matter how solidly founded a prediction may appear to us, we are never absolutely sure that experiment will not contradict it, if we undertake to verify it . […] It is far better to foresee even without certainty than not to foresee at all." (Henri Poincaré, "The Foundations of Science", 1913)

"The very name calculus of probabilities is a paradox. Probability opposed to certainty is what we do not know, and how can we calculate what we do not know?" (Henri Poincaré, "The Foundations of Science", 1913)

"The making of decisions, as everyone knows from personal experience, is a burdensome task. Offsetting the exhilaration that may result from correct and successful decision and the relief that follows the termination of a struggle to determine issues is the depression that comes from failure, or error of decision, and the frustration which ensues from uncertainty." (Chester I Barnard, "The Functions of the Executive", 1938)

"Uncertainty is introduced, however, by the impossibility of making generalizations, most of the time, which happens to all members of a class. Even scientific truth is a matter of probability and the degree of probability stops somewhere short of certainty." (Wayne C Minnick, "The Art of Persuasion", 1957)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"It is fair to say that statistics has made its greatest progress by having to move away from certainty [...] If we really want to make progress, we need to identify our next step away from certainty." (John W Tukey, "What Have Statisticians Been Forgetting", 1967)

"Statistics is a body of methods and theory applied to numerical evidence in making decisions in the face of uncertainty." (Lawrence Lapin, "Statistics for Modern Business Decisions", 1973)

"The most dominant decision type [that will have to be made in an organic organization] will be decisions under uncertainty." (Henry L Tosi & Stephen J Carroll, "Management", 1976)

"The greater the uncertainty, the greater the amount of decision making and information processing. It is hypothesized that organizations have limited capacities to process information and adopt different organizing modes to deal with task uncertainty. Therefore, variations in organizing modes are actually variations in the capacity of organizations to process information and make decisions about events which cannot be anticipated in advance." (John K Galbraith, "Organization Design", 1977)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"Knowledge specialists may ascribe a degree of certainty to their models of the world that baffles and offends managers. Often the complexity of the world cannot be reduced to mathematical abstractions that make sense to a manager. Managers who expect complete, one-to-one correspondence between the real world and each element in a model are disappointed and skeptical." (Dale E Zand, "Information, Organization, and Power", 1981)

"But there is trouble in store for anyone who surrenders to the temptation of mistaking an elegant hypothesis for a certainty: the readers of detective stories know this quite well." (Primo Levi, "The Periodic Table", 1984)

"Probability is the mathematics of uncertainty. Not only do we constantly face situations in which there is neither adequate data nor an adequate theory, but many modem theories have uncertainty built into their foundations. Thus learning to think in terms of probability is essential. Statistics is the reverse of probability (glibly speaking). In probability you go from the model of the situation to what you expect to see; in statistics you have the observations and you wish to estimate features of the underlying model." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Probability plays a central role in many fields, from quantum mechanics to information theory, and even older fields use probability now that the presence of 'noise' is officially admitted. The newer aspects of many fields start with the admission of uncertainty." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Models are often used to decide issues in situations marked by uncertainty. However statistical differences from data depend on assumptions about the process which generated these data. If the assumptions do not hold, the inferences may not be reliable either. This limitation is often ignored by applied workers who fail to identify crucial assumptions or subject them to any kind of empirical testing. In such circumstances, using statistical procedures may only compound the uncertainty." (David A Greedman & William C Navidi, "Regression Models for Adjusting the 1980 Census", Statistical Science Vol. 1 (1), 1986)

"The mathematical theories generally called 'mathematical theories of chance' actually ignore chance, uncertainty and probability. The models they consider are purely deterministic, and the quantities they study are, in the final analysis, no more than the mathematical frequencies of particular configurations, among all equally possible configurations, the calculation of which is based on combinatorial analysis. In reality, no axiomatic definition of chance is conceivable." (Maurice Allais, "An Outline of My Main Contributions to Economic Science", [Noble lecture] 1988)

"The worst, i.e., most dangerous, feature of 'accepting the null hypothesis' is the giving up of explicit uncertainty. [...] Mathematics can sometimes be put in such black-and-white terms, but our knowledge or belief about the external world never can." (John Tukey, "The Philosophy of Multiple Comparisons", Statistical Science Vol. 6 (1), 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"It is in the nature of theoretical science that there can be no such thing as certainty. A theory is only ‘true’ for as long as the majority of the scientific community maintain the view that the theory is the one best able to explain the observations." (Jim Baggott, "The Meaning of Quantum Theory", 1992)

"Statistics as a science is to quantify uncertainty, not unknown." (Chamont Wang, "Sense and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety", 1993)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Information entropy has its own special interpretation and is defined as the degree of unexpectedness in a message. The more unexpected words or phrases, the higher the entropy. It may be calculated with the regular binary logarithm on the number of existing alternatives in a given repertoire. A repertoire of 16 alternatives therefore gives a maximum entropy of 4 bits. Maximum entropy presupposes that all probabilities are equal and independent of each other. Minimum entropy exists when only one possibility is expected to be chosen. When uncertainty, variety or entropy decreases it is thus reasonable to speak of a corresponding increase in information." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The storytelling mind is allergic to uncertainty, randomness, and coincidence. It is addicted to meaning. If the storytelling mind cannot find meaningful patterns in the world, it will try to impose them. In short, the storytelling mind is a factory that churns out true stories when it can, but will manufacture lies when it can't." (Jonathan Gottschall, "The Storytelling Animal: How Stories Make Us Human", 2012)

"The data is a simplification - an abstraction - of the real world. So when you visualize data, you visualize an abstraction of the world, or at least some tiny facet of it. Visualization is an abstraction of data, so in the end, you end up with an abstraction of an abstraction, which creates an interesting challenge. […] Just like what it represents, data can be complex with variability and uncertainty, but consider it all in the right context, and it starts to make sense." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"We have minds that are equipped for certainty, linearity and short-term decisions, that must instead make long-term decisions in a non-linear, probabilistic world. (Paul Gibbons, "The Science of Successful Organizational Change", 2015)

"The elements of this cloud of uncertainty (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

"Estimates based on data are often uncertain. If the data were intended to tell us something about a wider population (like a poll of voting intentions before an election), or about the future, then we need to acknowledge that uncertainty. This is a double challenge for data visualization: it has to be calculated in some meaningful way and then shown on top of the data or statistics without making it all too cluttered." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...