"[...] we believe that in the course of learning something like a field map of the environment gets established in the rat's brain [...] and it is this tentative map, indicating routes and paths and environmental relationships, which finally determines what responses, if any, the animal will finally release." (Edward C Tolman, "Cognitive maps in rats and men", Psychological Review 55(4), 1948)
"[…] learning consists not in stimulus-response connections but in the building up in the nervous system of sets which function like cognitive maps […] such cognitive maps may be usefully characterized as varying from a narrow strip variety to a broader comprehensive variety." (Edward C Tolman, "Cognitive maps in rats and men", Psychological Review 55(4), 1948)
"The cognitive map is a construct that has been proposed to explain how individuals know their environment. It assumes that people store information about their environment in a simplified form and in relation to other information they already have. It further assumes that this information is coded in a structure which people carry around in their heads, and that this structure corresponds, at least to a reasonable degree, to the environment it represents. It is as if an individual carried a map or model of the environment in his head." (Stephen Kaplan, "Cognitive maps, human needs and the designed environment", Environmental design research vol. 1, 1973)
"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)
"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […] a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)
"The cognitive mapping approach promises to be more helpful to the decision maker for two reasons. First, since the advice can be expressed in terms of the person's own cognitive map, it can be solidly based in his own experience, using his own concepts, his own causal beliefs. and his own values. Equally important, when the cognitive map approach offers advice, it takes explicit account of the finite capacities of people and the way in which they simplify their images when dealing with a complex policy issue. Thus, with the cognitive mapping approach, a better understanding of how decisions are made can lead to the making of better decisions." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)
"Briefly, a cognitive map would consist of two major systems, a place system and a misplace system. The first is a memory system which contains information about places in the organism's environment, their spatial relations, and the existence of specific objects in specific places. The second, misplace, system signals changes in a particular place, involving either the presence of a new object or the absence of an old one. The place system permits an animal to locate itself in a familiar environment without reference to any specific sensory input, to go from one place to another independent of particular inputs (cues) or outputs (responses), and to link together conceptually parts of an environment which have never been experienced at the same time. The misplace system is primarily responsible for exploration, a species-typical behaviour which functions to build maps of new environments and to incorporate new information into existing maps." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)
"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)
"We would agree that organisms do not 'see' absolute space; cognitive maps are not pictures of the universe, they are schemata from which any portion of space can be constructed. The fact that we cannot perceive unified space does not mean we cannot conceive it; the latter potentiality derives from the possession of a structure which can be used to construct spaces that stretch endlessly in all dimensions." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)
"[...] cognitive maps can be seen as a picture or visual aid in comprehending the mappers' understanding of particular, and selective, elements of the thoughts (rather than thinking) of an individual, group or organization. They may also be seen as a representation that is amenable to analysis by both the mapper and others." (Colin Eden, "One the nature of cognitive maps", Journal of Management Studies 29 (3), 1992)
"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation - the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)
"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)
"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)
"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)
[cognitive map:] "A mental representation of a portion of the physical environment and the relative locations of points within it." (Andrew M Colman, "A Dictionary of Psychology" 3rd Ed, 2008)
[cognitive map:] "A mental model (or map) of the external environment which may be constructed following exploratory behaviour." (Michael Allaby, "A Dictionary of Zoology" 3rd Ed., 2009)
"There is no reason to believe that cognitive maps are like iconic maps except, rather than being inscribed in the dirt, or on a rock, or imprinted on paper, they are somehow inscribed in neural tissue. They seem to be more like lists of significant places intertwined with bearings and headings between one place and another. The vital significance of these places is part and parcel of the map; the “map” is not a neutral spatial substrate to which vital significance is later attached. The space of cognitive maps is not merely about physical position; it is about needs and satisfiers, vantage points and opportunities for action." (William Benzon, "Maps, Iconic and Abstract", 2011)
[Cognitive Map:] "A representation of the conceptualization that the subject constructs of the system in which he evolves. The set of cognitive representations that emerge make it possible to understand his actions, the links between the factors structuring the cognitive patterns dictating his behaviors." (Henda E Karray & Souhaila Kammoun, "Strategic Orientation of the Managers of a Tunisian Family Group Before and After the Revolution", 2020)
No comments:
Post a Comment