"A system is any portion of the universe set aside for certain specified purposes. For our concern, a system is set aside from the universe in a manner that will enable this system to be built without having to consider the total universe. Therefore, the system is set aside from the universe by its inputs and outputs - its boundaries. The system may be said to be in operation when its inputs are being transformed into the required outputs. (Incidently, we are not here concerned with completely closed systems.) The systems that do concern us all have a number of components within their boundaries which together effect the transformation of the inputs to the required outputs." (Kay Inaba et al, "A rational method for applying behavioral technology to man-machine system design", 1956)
"The discrete change has only to become small enough in its jump to approximate as closely as is desired to the continuous change. It must further be remembered that in natural phenomena the observations are almost invariably made at discrete intervals; the 'continuity' ascribed to natural events has often been put there by the observer's imagina- tion, not by actual observation at each of an infinite number of points. Thus the real truth is that the natural system is observed at discrete points, and our transformation represents it at discrete points. There can, therefore, be no real incompatibility."
"If a machine is a purposive system, then the machine's description will be given by an account of the successive states of the system as its purpose unfolds. This succession of states is given by a set of transitions of one item to another, and this set is known technically as a transformation. When the transforms obtained from a transformation include no fresh item, but are concerned with re-arranging the items that are there already, we speak of a closed system." (Stafford Beer, "Cybernetics and Management", 1959)
"A structure is a system of transformations. Inasmuch as it is a system and not a mere collection of elements and their properties, these transformations involve laws: the structure is preserved or enriched by the interplay of its transformation laws, which never yield results external to the system nor employ elements that are external to it. In short, the notion of structure is composed of three key ideas: the idea of wholeness, the idea of transformation, and the idea of self-regulation." (Jean Piaget, "Structuralism", 1968)
"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)
"A system can be described either as a transformation of inputs (stimuli) into outputs (responses)-the so-called input-output approach (also referred to as the causal or terminal systems approach), or in reference to the fulfillment of a purpose or the pursuit of a goal-the so-called goal-seeking or decision-making approach." (Mihajlo D Mesarovic & Y Takahara, "Foundations for the mathematical theory of general systems", 1975)
"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)
"The relations that define a system as a unity, and determine the dynamics of interaction and transformations which it may undergo as such a unity constitute the organization of the machine."(Humberto Maturana, "Autopoiesis and cognition: The realization of the living", 1980)
"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)
"In a closed system, the change in entropy must always be 'positive', meaning toward death. However, in open biological or social systems, entropy can be arrested and may even be transformed into negative entropy - a process of more complete organization and enhanced ability to transform resources. Why? Because the system imports energy and resources from its environment, leading to renewal. This is why education and learning are so important, as they provide new and stimulating input (termed neg-entropy) that can transform each of us." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)
"In our analysis of complex systems (like the brain and language) we must avoid the trap of trying to find master keys. Because of the mechanisms by which complex systems structure themselves, single principles provide inadequate descriptions. We should rather be sensitive to complex and self-organizing interactions and appreciate the play of patterns that perpetually transforms the system itself as well as the environment in which it operates." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)
"Physical systems are subject to the force of entropy, which increases until eventually the entire system fails. The tendency toward maximum entropy is a movement to disorder, complete lack of resource transformation, and death." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)
"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)
"A physical system is said to possess a symmetry if one can make a change in the system such that, after the change, the system is exactly the same as it was before. We call the change we are making to the system a symmetry operation or a symmetry transformation. If a system stays the same when we do a transformation to it, we say that the system is invariant under the transformation." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)
"So, a scientist's definition of symmetry would be something like this: symmetry is an invariance of an object or system to a transformation. The invariance is the sameness or constancy of the system in form, appearance, composition, arrangement, and so on, and a transformation is the abstract action we apply to the system that takes it from one state into another, equivalent, one. There are often numerous transformations we can apply on a given system that take it into an equivalent state." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)
"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)
"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)
"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)
"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)
"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)
No comments:
Post a Comment