"This compromise among the contending forces of nature was effected through organization and the formation of chemical systems, which are so many reservoirs of power, this power being represented by what we call the properties of matter. These systems store up energy and expend it in work, but the work is always a collaboration or cooperation of all the competing forces involved. It is synergy." (Lester F Ward, "Pure Sociology", 1903)
"Synergy is the principle that explains all organization and creates all structures. The products of cosmic synergy are found in all fields of phenomena. Celestial structures are worlds and world systems; chemical structures are atoms, molecules, and substances; biotic structures are protoplasm, cells, tissues, organs, and organisms. There are also psychic structures - feelings, emotions, passions, volitions, perceptions, cognitions, memory, imagination, reason, thought, and all the acts of consciousness. And then there are social structures […]. These are the products of the social forces acting under the principle of social synergy." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)
"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov." Tektologia: Vseobshchaya Organizatsionnaya Nauka" ["Tektology: The Universal Organizational Science"], 1922)
"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’" (Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)
"Even these humble objects reveal that our reality is not a mere collocation of elemental facts, but consists of units in which no part exists by itself, where each part points beyond itself and implies a larger whole. Facts and significance cease to be two concepts belonging to different realms, since a fact is always a fact in an intrinsically coherent whole. We could solve no problem of organization by solving it for each point separately, one after the other; the solution had to come for the whole. Thus we see how the problem of significance is closely bound up with the problem of the relation between the whole and its parts. It has been said: The whole is more than the sum of its parts. It is more correct to say that the whole is something else than the sum of its parts, because summing is a meaningless procedure, whereas the whole-part relationship is meaningful." (Kurt Koffka, "Principles of Gestalt Psychology", 1935)
"Just as entropy is a measure of disorganization, the information carried by a set of messages is a measure of organization. In fact, it is possible to interpret the information carried by a message as essentially the negative of its entropy, and the negative logarithm of its probability. That is, the more probable the message, the less information it gives. Clichés, for example, are less illuminating than great poems." (Norbert Wiener, "The Human Use of Human Beings", 1950)
"[…] the characteristic tendency of entropy is to increase. As entropy increases, the universe, and all closed systems in the universe, tend naturally to deteriorate and lose their distinctiveness, to move from the least to the most probable state, from a state of organization and differentiation in which distinctions and forms exist, to a state of chaos and sameness." (Norbert Wiener, "The Human Use of Human Beings", 1950)
"A system is primarily a living system, and the process which defines it is the maintenance of an organization which we know as life." (Ralph W Gerard, "Units and Concepts of Biology", 1958)
"It is inherent in the logical character of the abstract self-organizing system that all available methods of organization are used, and that it cannot be realized in a single reference frame. Thus, any of the tricks which the physical model can perform, such as learning and remembering, may be performed by one or all of a variety of mechanisms, chemical or electrical or mechanical." (Gordon Pask, "The Natural History of Networks", 1960)
"[The equilibrium model describes systems] which, in moving to an equilibrium point, typically lose organization, and then tend to hold that minimum level within relatively narrow conditions of disturbance." (Walter F Buckley, "Sociology and modern systems theory", 1967)
"Now we are looking for another basic outlook on the world - the world as organization. Such a conception - if it can be substantiated - would indeed change the basic categories upon which scientific thought rests, and profoundly influence practical attitudes. This trend is marked by the emergence of a bundle of new disciplines such as cybernetics, information theory, general system theory, theories of games, of decisions, of queuing and others; in practical applications, systems analysis, systems engineering, operations research, etc. They are different in basic assumptions, mathematical techniques and aims, and they are often unsatisfactory and sometimes contradictory. They agree, however, in being concerned, in one way or another, with ‘systems’, ‘wholes’ or ‘organizations’; and in their totality, they herald a new approach." (Ludwig von Bertalanffy, "General System Theory", 1968)
"The fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioral and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis." (Ludwig von Bertalanffy, "General System Theory", 1968)
"There are different levels of organization in the occurrence of events. You cannot explain the events of one level in terms of the events of another. For example, you cannot explain life in terms of mechanical concepts, nor society in terms of individual psychology. Analysis can only take you down the scale of organization. It cannot reveal the workings of things on a higher level. To some extent the holistic philosophers are right." (Anatol Rapoport,"General Systems" Vol. 14, 1969)
"A cognitive system is a system whose organization defines a domain of interactions in which it can act with relevance to the maintenance of itself, and the process of cognition is the actual (inductive) acting or behaving in this domain. Living systems are cognitive systems, and living as a process is a process of cognition. This statement is valid for all organisms, with and without a nervous system." (Humberto R Maturana, "Biology of Cognition", 1970)
"A living system, due to its circular organization, is an inductive system and functions always in a predictive manner: what happened once will occur again. Its organization, (genetic and otherwise) is conservative and repeats only that which works. For this same reason living systems are historical systems; the relevance of a given conduct or mode of behavior is always determined in the past." (Humberto Maturana, "Biology of Cognition", 1970)
"In self-organizing systems, on the other hand, ‘control’ of the organization is typically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)
"Whereas traditional reductionism sought to find the commonality underlying diversity in reference to a shared substance, such as material atoms, contemporary systems theory seeks to find common features in terms of shared aspects of organization." (Ervin László, "The Systems View of the World: A Holistic Vision for Our Time", 1972)
"The branch of modern science called cybernetics gives us concepts that describe the evolutionary process at both the level of intracellular structures and the level of social phenomena. The fundamental unity of the evolutionary process at all levels of organization is transformed from a philosophical view to a scientifically substantiated fact." (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)
"The autonomy of living systems is characterized by closed, recursive organization. [...] A system's highest order of recursion or feedback process defines, generates, and maintains the autonomy of a system. The range of deviation this feedback seeks to control concerns the organization of the whole system itself. If the system should move beyond the limits of its own range of organization it would cease to be a system. Thus, autonomy refers to the maintenance of a systems wholeness. In biology, it becomes a definition of what maintains the variable called living." (Bradford P Keeney, "Aesthetics of Change", 1983)
"Organization denotes those relations that must exist among the components of a system for it to be a member of a specific class. Structure denotes the components and relations that actually constitute a particular unity and make its organization real." (Humberto Maturana, "The Tree of Knowledge", 1987)
"The dynamics of any system can be explained by showing the relations between its parts and the regularities of their interactions so as to reveal its organization. For us to fully understand it, however, we need not only to see it as a unity operating in its internal dynamics, but also to see it in its circumstances, i.e., in the context to which its operation connects it. This understanding requires that we adopt a certain distance for observation, a perspective that in the case of historical systems implies a reference to their origin. This can be easy, for instance, in the case of man-made machines, for we have access to every detail of their manufacture. The situation is not that easy, however, as regards living beings: their genesis and their history are never directly visible and can be reconstructed only by fragments." (Humberto Maturana, "The Tree of Knowledge", 1987)
"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)
"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)
"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)
"Distributed control means that the outcomes of a complex adaptive system emerge from a process of self-organization rather than being designed and controlled externally or by a centralized body." (Brenda Zimmerman et al, "A complexity science primer", 1998)
"There has to be a constant flow of energy to maintain the organization of the system and to ensure its survival. Equilibrium is another word for death." (Paul Cilliers, "Complexity and Postmodernism", 1998)
"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)
"All systems have a tendency toward maximum entropy, disorder, and death. Importing resources from the environment is key to long-term viability; closed systems move toward this disorganization faster than open systems." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)
"The systems approach, on the other hand, provides an expanded structural design of organizations as living systems that more accurately reflects reality." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)
"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)
"Maybe it is not complexity per se that is significant, but organized complexity." (Paul Davies, "The Origin of Life", 2003)
"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)
"An ecology provides the special formations needed by organizations. Ecologies are: loose, free, dynamic, adaptable, messy, and chaotic. Innovation does not arise through hierarchies. As a function of creativity, innovation requires trust, openness, and a spirit of experimentation - where random ideas and thoughts can collide for re-creation." (George Siemens, "Knowing Knowledge", 2006)
"The breakdown of a system […] simplifies its internal organization and reduces its range of potential behaviors." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)
"No investigation of complexity would be complete without a brief summary of what is often considered to be its most extreme form. Beyond the mathematical upper border of complexity lies the deceptively camouflaged notion of chaos. This is not strictly analogous to the classical interpretations of its name involving shear calamity and confusion. Instead, in mathematical or computational terms, chaos relates to much simpler notions of pattern and organization. It may be random to our native observation, certainly, but it is also far more concisely describable than complexity when inspected using modern mathematical techniques." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)
"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)
"In that sense, a self-organizing system is intrinsically adaptive: it maintains its basic organization in spite of continuing changes in its environment. As noted, perturbations may even make the system more robust, by helping it to discover a more stable organization." (Francis Heylighen, "Complexity and Self-Organization", 2008)
"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, "God: The Failed Hypothesis", 2010)
"Complexity is a phenomenon that involves a lot of interaction and interference between a very large number of units. It is related to chance, while analysis involves uncertainties and random phenomena. With regard to chance and uncertainty the goal of complexity theory is or constant traffic movement in this direction: order-disorder-organization. The Science of Complexity is a rapidly developing corpus dedicated to the study of dynamic natural systems. A set of theories and sub-theories as theories interrelated Chaos of Disasters, of Fractals, and several others related to the phenomenon of self-organization, created and consolidated some of the key concepts in the characterization of contemporary science: chaos; nonlinearity; unpredictability; random; indeterminism; emergency; self-organization; self-similarity." (Mauro Chiarella, "Folds and Refolds: Space Generation, Shapes, and Complex Components", 2016)
Disclaimer: Most of the quotes on self-organization were left out.