"Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth, unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", cca. 1267)
"On the other hand, if we add observation to observation, without attempting to draw no only certain conclusions, but also conjectural views from them, we offend against the very end for which only observations ought to be made." (Friedrich W Herschel, "On the Construction of the Heavens", Philosophical Transactions of the Royal Society of London Vol. LXXV, 1785)
"The art of drawing conclusions from experiments and observations consists in evaluating probabilities and in estimating whether they are sufficiently great or numerous enough to constitute proofs. This kind of calculation is more complicated and more difficult than it is commonly thought to be […]" (Antoine-Laurent Lavoisier, cca. 1790)
"Before anything can be reasoned upon to a conclusion, certain facts, principles, or data, to reason from, must be established, admitted, or denied." (Thomas Paine, "Rights of Man", 1791)
"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)
"Such is the tendency of the human mind to speculation, that on the least idea of an analogy between a few phenomena, it leaps forward, as it were, to a cause or law, to the temporary neglect of all the rest; so that, in fact, almost all our principal inductions must be regarded as a series of ascents and descents, and of conclusions from a few cases, verified by trial on many." (Sir John Herschel, "A Preliminary Discourse on the Study of Natural Philosophy" , 1830)
"Observation is so wide awake, and facts are being so rapidly added to the sum of human experience, that it appears as if the theorizer would always be in arrears, and were doomed forever to arrive at imperfect conclusion; but the power to perceive a law is equally rare in all ages of the world, and depends but little on the number of facts observed." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)
"It is of the nature of true science to take nothing on trust or on authority. Every fact must be established by accurate observation, experiment, or calculation. Every law and principle must rest on inductive argument. The apostolic motto, ‘Prove all things, hold fast that which is good’, is thoroughly scientific. It is true that the mere reader of popular science must often be content to take that on testimony which he cannot personally verify; but it is desirable that even the most cursory reader should fully comprehend the modes in which facts are ascertained and the reasons on which the conclusions are based." (Sir John W Dawson, "The Chain of Life in Geological Time", 1880)
"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890)
"Just as data gathered by an incompetent observer are worthless - or by a biased observer, unless the bias can be measured and eliminated from the result - so also conclusions obtained from even the best data by one unacquainted with the principles of statistics must be of doubtful value." (William F White, "A Scrap-Book of Elementary Mathematics: Notes, Recreations, Essays", 1908)
"Ordinarily, facts do not speak for themselves. When they do speak for themselves, the wrong conclusions are often drawn from them. Unless the facts are presented in a clear and interesting manner, they are about as effective as a phonograph record with the phonograph missing." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they are therefore no substitutes for such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in explaining the conclusions founded upon them." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"Observed facts must be built up, woven together, ordered, arranged, systematized into conclusions and theories by reflection and reason, if they are to have full bearing on life and the universe. Knowledge is the accumulation of facts. Wisdom is the establishment of relations. And just because the latter process is delicate and perilous, it is all the more delightful." (Gamaliel Bradford, "Darwin", 1926)
"The characteristic which distinguishes the present-day professional statistician, is his interest and skill in the measurement of the fallibility of conclusions." (George W Snedecor, "On a Unique Feature of Statistics", [address] 1948)
"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)
"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)
"Another thing to watch out for is a conclusion in which a correlation has been inferred to continue beyond the data with which it has been demonstrated." (Darell Huff, "How to Lie with Statistics", 1954)
"Model-making, the imaginative and logical steps which precede the experiment, may be judged the most valuable part of scientific method because skill and insight in these matters are rare. Without them we do not know what experiment to do. But it is the experiment which provides the raw material for scientific theory. Scientific theory cannot be built directly from the conclusions of conceptual models." (Herbert G Andrewartha," Introduction to the Study of Animal Population", 1961)
"A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions." (Otis D Duncan, "Introduction to Structural Equation Models", 1975)
"Crude measurement usually yields misleading, even erroneous conclusions no matter how sophisticated a technique is used." (Henry T Reynolds, "Analysis of Nominal Data", 1977)
"Science is a process. It is a way of thinking, a manner of approaching and of possibly resolving problems, a route by which one can produce order and sense out of disorganized and chaotic observations. Through it we achieve useful conclusions and results that are compelling and upon which there is a tendency to agree." (Isaac Asimov, "‘X’ Stands for Unknown", 1984)
"In everyday life, 'estimation' means a rough and imprecise procedure leading to a rough and imprecise result. You 'estimate' when you cannot measure exactly. In statistics, on the other hand, 'estimation' is a technical term. It means a precise and accurate procedure, leading to a result which may be imprecise, but where at least the extent of the imprecision is known. It has nothing to do with approximation. You have some data, from which you want to draw conclusions and produce a 'best' value for some particular numerical quantity (or perhaps for several quantities), and you probably also want to know how reliable this value is, i.e. what the error is on your estimate." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)
"Statistical models for data are never true. The question whether a model is true is irrelevant. A more appropriate question is whether we obtain the correct scientific conclusion if we pretend that the process under study behaves according to a particular statistical model." (Scott Zeger, "Statistical reasoning in epidemiology", American Journal of Epidemiology, 1991)
"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry", 1992)
"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)
"Information needs representation. The idea that it is possible to communicate information in a 'pure' form is fiction. Successful risk communication requires intuitively clear representations. Playing with representations can help us not only to understand numbers (describe phenomena) but also to draw conclusions from numbers (make inferences). There is no single best representation, because what is needed always depends on the minds that are doing the communicating." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"Data, reason, and calculation can only produce conclusions; they do not inspire action. Good numbers are not the result of managing numbers." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)
"It is in the nature of human beings to bend information in the direction of desired conclusions." (John Naisbitt, "Mind Set!: Reset Your Thinking and See the Future", 2006)
"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)
"We naturally draw conclusions from what we see […]. We should also think about what we do not see […]. The unseen data may be just as important, or even more important, than the seen data. To avoid survivor bias, start in the past and look forward." (Gary Smith, "Standard Deviations", 2014)
"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)
"In terms of characteristics, a data scientist has an inquisitive mind and is prepared to explore and ask questions, examine assumptions and analyse processes, test hypotheses and try out solutions and, based on evidence, communicate informed conclusions, recommendations and caveats to stakeholders and decision makers." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017)
"Just because there’s a number on it, it doesn’t mean that the number was arrived at properly. […] There are a host of errors and biases that can enter into the collection process, and these can lead millions of people to draw the wrong conclusions. Although most of us won’t ever participate in the collection process, thinking about it, critically, is easy to learn and within the reach of all of us." (Daniel J Levitin, "Weaponized Lies", 2017)
"Good data scientists know that, because of inevitable ups and downs in the data for almost any interesting question, they shouldn’t draw conclusions from small samples, where flukes might look like evidence." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)
"Each decision about what data to gather and how to analyze them is akin to standing on a pathway as it forks left and right and deciding which way to go. What seems like a few simple choices can quickly multiply into a labyrinth of different possibilities. Make one combination of choices and you’ll reach one conclusion; make another, equally reasonable, and you might find a very different pattern in the data." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)
"If the data that go into the analysis are flawed, the specific technical details of the analysis don’t matter. One can obtain stupid results from bad data without any statistical trickery. And this is often how bullshit arguments are created, deliberately or otherwise. To catch this sort of bullshit, you don’t have to unpack the black box. All you have to do is think carefully about the data that went into the black box and the results that came out. Are the data unbiased, reasonable, and relevant to the problem at hand? Do the results pass basic plausibility checks? Do they support whatever conclusions are drawn?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)
No comments:
Post a Comment