03 June 2021

❄️Systems Thinking: On Behavior (Quotes)

"All human actions have one or more of these seven causes: chance, nature, compulsions, habit, reason, passion, desire." (Aristotle, 4th century BC)

"The properties commonly ascribed to any object are, in last analysis, names for its behavior." (C Judson Herrick, "An Introduction to Neurology", 1915)

"It has long seemed obvious - and is, in fact, the characteristic tone of European science - that 'science' means breaking up complexes into their component elements. Isolate the elements, discover their laws, then reassemble them, and the problem is solved. All wholes are reduced to pieces and piecewise relations between pieces. The fundamental 'formula' of Gestalt theory might be expressed in this way. There are wholes, the behaviour of which is not determined by that of their individual elements, but where the part-processes are themselves determined by the intrinsic nature of the whole. It is the hope of Gestalt theory to determine the nature of such wholes." (Max Wertheimer, "Gestalt Theory," 1924)

"The process moves in the direction of a state of equilibrium only for the system as a whole. Part processes may at the same time go on in opposed directions, a circumstance which is of the greatest significance for, for example, the theory of detour behavior. It is hence important to take the system whole which is dominant at the moment as basis." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"All purposeful behavior may be considered to require negative feed-back. If a goal is to be attained, some signals from the goal are necessary at some time to direct the behavior. By non-feed-back behavior is meant that in which there are no signals from the goal which modify the activity of the object in the course of the behavior. Thus, a machine may be set to impinge upon a luminous object although the machine may be insensitive to light." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Technology", Philosophy of Science Vol. 10 (1), 1943)

"In classifying behavior, the term teleology was used as synonymous with purpose controlled by feed-back. […] Since we consider purposefulness a concept necessary for the understanding of certain modes of behavior we suggest that a teleological study is useful if it avoids problems of causality and concerns itself merely with an investigation of purpose." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Technology", Philosophy of Science Vol. 10 (1), 1943)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"Every organism represents a system, by which term we mean a complex of elements in mutual interaction. From this obvious statement the limitations of the analytical and summative conceptions must follow. First, it is impossible to resolve the phenomena of life completely into elementary units; for each individual part and each individual event depends not only on conditions within itself, but also to a greater or lesser extent on the conditions within the whole, or within superordinate units of which it is a part. Hence the behavior of an isolated part is, in general, different from its behavior within the context of the whole. [...] Secondly, the actual whole shows properties that are absent from its isolated parts." (Ludwig von Bertalanffy, "Problems of Life", 1952)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"An economic system is not a linear system, and [...] this fact stands in the way of the determination of the parameters of the system by methods that presume linearity, and [...] it introduces great difficulties in the extrapolation from past behaviour for purposes of prediction. [...] Actual economic systems are constantly subjected to change and disturbances, which would result in irregularity." (Arnold Tustin, "The Mechanism of Economic System", 1953)

"For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)

"In our definition of system we noted that all systems have interrelationships between objects and between their attributes. If every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system, the system is said to behave as a whole or coherently. At the other extreme is a set of parts that are completely unrelated: that is, a change in each part depends only on that part alone. The variation in the set is the physical sum of the variations of the parts. Such behavior is called independent or physical summativity." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Systems engineering is the name given to engineering activity which considers the overall behavior of a system, or more generally which considers all factors bearing on a problem, and the systems approach to control engineering problems is correspondingly that approach which examines the total dynamic behavior of an integrated system. It is concerned more with quality of performance than with sizes, capacities, or efficiencies, although in the most general sense systems engineering is concerned with overall, comprehensive appraisal." (Ernest F Johnson, "Automatic process control", 1958)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]" (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Synergy is the only word in our language that means behavior of whole systems unpredicted by the separately observed behaviors of any of the system's separate parts or any subassembly of the system's parts." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1963)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Even in a complex system only one or a few loops dominate the behavior of a variable of interest over an interval of time. […] These loops that dominate the behavior of a variable shift and usually produce different characteristic behavior due to the shift." (Carl V Swanson, "Notions Useful for the Analysis of Complex Feedback Systems", 1968)

"The fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioral and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis." (Ludwig von Bertalanffy, "General System Theory", 1968)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"A living system, due to its circular organization, is an inductive system and functions always in a predictive manner: what happened once will occur again. Its organization, (genetic and otherwise) is conservative and repeats only that which works. For this same reason living systems are historical systems; the relevance of a given conduct or mode of behavior is always determined in the past." (Humberto Maturana, "Biology of Cognition", 1970)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Synergy means behavior of whole systems unpredicted by the behavior of their parts taken separately." (R Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"The subject of study in systems theory is not a 'physical object', a chemical or social phenomenon, for example, but a 'system': a formal relationship between observed features or attributes. For conceptual reasons, the language used in describing the behavior of systems is that of information processing and goal seeking (decision making control)." (Mihajlo D Mesarovic & Y Takahara, "Foundations for the mathematical theory of general systems", 1975)

"In any system governed by a potential, and in which the system's behavior is determined by no more than four different factors, only seven qualitatively different types of discontinuity are possible. In other words, while there are an infinite number of ways for such a system to change continuously (staying at or near equilibrium), there are only seven structurally stable ways for it to change discontinuously (passing through non-equilibrium states)." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"When a mess, which is a system of problems, is taken apart, it loses its essential properties and so does each of its parts. The behavior of a mess depends more on how the treatment of its parts interact than how they act independently of each other. A partial solution to a whole system of problems is better than whole solutions of each of its parts taken separately." (Russell L Ackoff, "The future of operational research is past", The Journal of the Operational Research Society Vol. 30 (2), 1979)

"A nonlinear relationship causes the feedback loop of which it is a part to vary in strength, depending on the state of the system. Linked nonlinear feedback loops thus form patterns of shifting loop dominance- under some conditions one part of the system is very active, and under other conditions another set of relationships takes control and shifts the entire system behavior. A model composed of several feedback loops linked nonlinearly can produce a wide variety of complex behavior patterns." (Jørgen Randers, "Elements of the System Dynamics Method", 1980)

"The emphasis in system(s) theory is on the dynamic behaviour of these phenomena, i.e. how do characteristic features (such as input and output) change in time and what are the relationships, also as functions of time. One tries to design control systems such that a desired behaviour is achieved. In this sense mathematical system(s) theory (and control theory) distinguishes itself from many other branches of mathematics in the sense that it is prescriptive rather than descriptive." (G J Olsder & J.W. van der Woude, "Mathematical Systems Theory" 2nd Ed., 1983)

"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Given an approximate knowledge of a system's initial conditions and an understanding of natural law, one can calculate the approximate behavior of the system. This assumption lay at the philosophical heart of science." (James Gleick, Chaos: Making a New Science, 1987)

"Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again - the pieces add up. Nonlinear systems generally cannot be solved and cannot be added together. [...] Nonlinearity means that the act of playing the game has a way of changing the rules. [...] That twisted changeability makes nonlinearity hard to calculate, but it also creates rich kinds of behavior that never occur in linear systems." (James Gleick, "Chaos: Making a New Science", 1987)

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987) 

"Symmetries abound in nature, in technology, and - especially - in the simplified mathematical models we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favorite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the 'generic' behavior of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted idea of genericity." (Ian Stewart, "Bifurcation with symmetry", 1988)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Unfortunately, recognizing a system as chaotic will not tell us all that we might like to know. It will not provide us with a means of predicting the future course of the system. It will tell us that there is a limit to how far ahead we can predict, but it may not tell us what this limit is. Perhaps the best advice that chaos 'theory' can give us is not to jump at conclusions; unexpected occurrences may constitute perfectly normal behavior." (Edward N Lorenz, "Chaos, spontaneous climatic variations and detection of the greenhouse effect", 1991)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"In its essence, chaos is an irregular oscillatory process. Because chaos is a subset of the more general classification of oscillatory dynamics, it is useful before venturing into chaos to review briefly the extent to which regular oscillatory processes influence human behavior." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"It has long been appreciated by science that large numbers behave differently than small numbers. Mobs breed a requisite measure of complexity for emergent entities. The total number of possible interactions between two or more members accumulates exponentially as the number of members increases. At a high level of connectivity, and a high number of members, the dynamics of mobs takes hold. " (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting."  (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The reason catastrophe theory can tell us about such abrupt changes in a system's behavior is that we usually observe a dynamical system when it's at or near its steady-state, or equilibrium, position. And under various assumptions about the nature of the system's dynamical law of motion, the set of all possible equilibrium states is simply the set of critical points of a smooth function closely related to the system dynamics. When these critical points are nondegenerate, Morse's Theorem applies. But it is exactly when they become degenerate that the system can move sharply from one equilibrium position to another. The Thorn Classification Theorem tells when such shifts will occur and what direction they will take." (John L Casti, "Five Golden Rules", 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living  systems", 1996)

"Today the network of relationships linking the human race to itself and to the rest of the biosphere is so complex that all aspects affect all others to an extraordinary degree. Someone should be studying the whole system, however crudely that has to be done, because no gluing together of partial studies of a complex nonlinear system can give a good idea of the behaviour of the whole." (Murray Gell-Mann, 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers, "Complexity and Postmodernism", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of “collective intelligence” is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"When a process displays unpredictable behavior, you can most easily improve the process and process outcomes by identifying the assignable causes of unpredictable variation and removing their effects from your process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"In principle, a self-organising system cannot be constructed, since its organisation and behaviour cannot be prescribed and created by an external source. It emerges autonomously in certain conditions (which cannot be prescribed either). The task of the researcher is to investigate in what kind of systems and under what kind of conditions self-organisation emerges." (Rein Vihalemm, "Chemistry as an Interesting Subject for the Philosophy of Science", 2001)

"Systems thinking expands the focus of the observer, whereas analytical thinking reduces it. In other words, analysis looks into things, synthesis looks out of them. This attitude of systems thinking is often called expansionism, an alternative to classic reductionism. Whereas analytical thinking concentrates on static and structural properties, systems thinking concentrates on the function and behaviour of whole systems. Analysis gives description and knowledge; systems thinking gives explanation and understanding." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Over and over again we will see the same kind of thing: that even though the underlying rules for a system are simple, and even though the system is started from simple initial conditions, the behavior that the system shows can nevertheless be highly complex." (Stephen Wolfram, "A New Kind of Science", 2002)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"A system is an open set of complementary, interacting parts, with properties, capabilities and behaviours of the set emerging both from the parts and from their interactions to synthesize a unified whole." (Derek Hitchins, "Advanced Systems Thinking, Engineering, and Management", 2003)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. The galloping horse illusion depends upon the persistence of the human retina/brain combination, for instance. Elemental gases bond in combination by sharing outer electrons, thereby altering the appearance and behavior of the combination. In every case of emergence, the source is interaction between the parts - sometimes, as with the brain, very many parts - so that the phenomenon defies simple explanation." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"The existence of equilibria or steady periodic solutions is not sufficient to determine if a system will actually behave that way. The stability of these solutions must also be checked. As parameters are changed, a stable motion can become unstable and new solutions may appear. The study of the changes in the dynamic behavior of systems as parameters are varied is the subject of bifurcation theory. Values of the parameters at which the qualitative or topological nature of the motion changes are known as critical or bifurcation values." (Francis C Moona, "Nonlinear Dynamics", 2003)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, Chaos Theory: A Brief Introduction, 2006)

"This reduction principle - the reduction of the behavior of a complex system to the behavior of its parts - is valid only if the level of complexity of the system is rather low." (Andrzej P Wierzbicki & Yoshiteru Nakamori, "Creative Space: Models of Creative Processes for the Knowledge Civilization Age", Studies in Computational Intelligence Vol.10, 2006)

"How is it that an ant colony can organize itself to carry out the complex tasks of food gathering and nest building and at the same time exhibit an enormous degree of resilience if disrupted and forced to adapt to changing situations? Natural systems are able not only to survive, but also to adapt and become better suited to their environment, in effect optimizing their behavior over time. They seemingly exhibit collective intelligence, or swarm intelligence as it is called, even without the existence of or the direction provided by a central authority." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"At a time when the world is more messy, more crowded, more interconnected, more interdependent, and more rapidly changing than ever before, the more ways of seeing, the better. The systems-thinking lens allows us to reclaim our intuition about whole systems and hone our abilities to understand parts, see interconnections, ask 'what-if' questions about possible future behaviors, and be creative and courageous about system redesign. (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"[a complex system is] a system in which large networks of components with no central control and simple rules of operation give rise to complex collective behavior, sophisticated information processing, and adaptation via learning or evolution." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"A typical complex system consists of a vast number of identical copies of several generic processes, which are operating and interacting only locally or with a limited number of not necessary close neighbours. There is no global leader or controller associated to such systems and the resulting behaviour is usually very complex." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Complexity theory embraces things that are complicated, involve many elements and many interactions, are not deterministic, and are given to unexpected outcomes. […] A fundamental aspect of complexity theory is the overall or aggregate behavior of a large number of items, parts, or units that are entangled, connected, or networked together. […] In contrast to classical scientific methods that directly link theory and outcome, complexity theory does not typically provide simple cause-and-effect explanations." (Robert E Gunther et al, "The Network Challenge: Strategy, Profit, and Risk in an Interlinked World", 2009)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini," Chaos: From Simple Models to Complex Systems", 2010)

"In chaotic deterministic systems, the probabilistic description is not linked to the number of degrees of freedom (which can be just one as for the logistic map) but stems from the intrinsic erraticism of chaotic trajectories and the exponential amplification of small uncertainties, reducing the control on the system behavior." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Greegory Faye, "An introduction to bifurcation theory",  2011)

"System theorists know that it's easy to couple simple-to-understand systems into a ‘super system’ that's capable of displaying behavioral modes that cannot be seen in any of its constituent parts. This is the process called ‘emergence’." (John L Casti, [interview with Austin Allen], 2012)

"Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations can occur in both continuous systems (described by ODEs, DDEs, or PDEs) and discrete systems (described by maps)." (Tianshou Zhou, "Bifurcation", 2013)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the "theory" of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations can occur in both continuous systems (described by ODEs, DDEs, or PDEs) and discrete systems (described by maps)." (Tianshou Zhou, "Bifurcation", 2013)

"Swarm intelligence (SI) is a branch of computational intelligence that discusses the collective behavior emerging within self-organizing societies of agents. SI was inspired by the observation of the collective behavior in societies in nature such as the movement of birds and fish. The collective behavior of such ecosystems, and their artificial counterpart of SI, is not encoded within the set of rules that determines the movement of each isolated agent, but it emerges through the interaction of multiple agents." (Maximos A Kaliakatsos-Papakostas et al, "Intelligent Music Composition", 2013)

"The other buzzword that epitomizes a bias toward substitution is 'big data'. Today’s companies have an insatiable appetite for data, mistakenly believing that more data always creates more value. But big data is usually dumb data. Computers can find patterns that elude humans, but they don’t know how to compare patterns from different sources or how to interpret complex behaviors. Actionable insights can only come from a human analyst (or the kind of generalized artificial intelligence that exists only in science fiction)." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", LewRockwell.com, August 1, 2014)

"There is no linear additive process that, if all the parts are taken together, can be understood to create the total system that occurs at the moment of self-organization; it is not a quantity that comes into being. It is not predictable in its shape or subsequent behavior or its subsequent qualities. There is a nonlinear quality that comes into being at the moment of synchronicity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"A system which is usually composed of large number of possibly heterogeneous interacting agents, which are seen to exhibit emergent behavior. Emergence implies that system level behavior (macro level) cannot be inferred from observation of individual level behavior of its constituents (micro level). This absence of explicit links between the micro and macro levels makes complex systems especially difficult to analyze using traditional statistical and analytical techniques to study the dynamics of behavior. One typically requires the use of bottom up simulation based methods to study such systems. Complex systems are ubiquitous - markets, societies, social networks, the Internet, weather, ecosystems, are just a few examples." (Stephen E Glavin & Abhijit Sengupta, "Modelling of Consumer Goods Markets: An Agent-Based Computational Approach", Handbook of Research on Managing and Influencing Consumer Behavior, 2015)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"System dynamics [...] uses models and computer simulations to understand behavior of an entire system, and has been applied to the behavior of large and complex national issues. It portrays the relationships in systems as feedback loops, lags, and other descriptors to explain dynamics, that is, how a system behaves over time. Its quantitative methodology relies on what are called 'stock-and-flow diagrams' that reflect how levels of specific elements accumulate over time and the rate at which they change. Qualitative systems thinking constructs evolved from this quantitative discipline." (Karen L Higgins, "Economic Growth and Sustainability: Systems Thinking for a Complex World", 2015)

"Systems thinking is a discipline or process that considers how individual elements interact with one another as part of a whole entity. As an approach to solving problems, systems thinking uses relationships among individual elements and the dynamics of these relationships to explain the behavior of systems such as an ecosystem, social system, or organization." (Karen L Higgins, "Economic Growth and Sustainability: Systems Thinking for a Complex World", 2015)

"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)

"The basis of system dynamics is to understand how system structures cause system behavior and system events." (Arzu E Şenaras, "A Suggestion for Energy Policy Planning System Dynamics", 2018)

"In the physics [entropy is the] rate of system´s messiness or disorder in a physical system. In the social systems theory - social entropy is a sociological theory that evaluates social behaviors using a method based on the second law of thermodynamics." (Justína Mikulášková et al, "Spiral Management: New Concept of the Social Systems Management", 2020)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...