30 April 2021

🦋Science: On Synthesis (Quotes)

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"Analysis is the obtaining of the thing sought by assuming it and so reasoning up to an admitted truth; synthesis is the obtaining of the thing sought by reasoning up to the inference and proof of it."" (Eudoxus, cca. 4th century BC)

"As the analysis of a substantial composite terminates only in a part which is not a whole, that is, in a simple part, so synthesis terminates only in a whole which is not a part, that is, the world." (Immanuel Kant, "Inaugural Dissertation", 1770)

"The schema is in itself always a product of imagination. Since, however, the synthesis of imagination aims at no special intuition, but only at unity in the determination of sensibility, the schema has to be distinguished from the image." (Immanuel Kant," Critique of Pure Reason", 1781)

"With the synthesis of every new concept in the aggregation of coordinate characteristics the extensive or complex distinctness is increased; with the further analysis of concepts in the series of subordinate characteristics the intensive or deep distinctness is increased. The latter kind of distinctness, as it necessarily serves the thoroughness and conclusiveness of cognition, is therefore mainly the business of philosophy and is carried farthest especially in metaphysical investigations." (Immanuel Kant, "Logic", 1800)

"Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts of the same method. Each is the relative and correlative of the other. Analysis, without a subsequent synthesis, is incomplete; it is a mean cut of from its end. Synthesis, without a previous analysis, is baseless; for synthesis receives from analysis the elements which it recomposes." (Sir William Hamilton, "Lectures on Metaphysics and Logic: 6th Lecture on Metaphysics", 1858)

"In all the previous cases of wholes, we have nowhere been able to argue from the parts of the whole. Compared to its parts, the whole constituted by them is something quite different, something creatively new, as we have seen. Creative evolution synthesises from the parts a new entity not only different from them, but quite transcending them. That is the essence of a whole. It is always transcendent to its parts, and its character cannot be inferred from the characters of its parts." (Jan Smuts, "Holism and Evolution", 1926)

"[...] our knowledge of the external world must always consist of numbers, and our picture of the universe - the synthesis of our knowledge - must necessarily be mathematical in form. All the concrete details of the picture, the apples, the pears and bananas, the ether and atoms and electrons, are mere clothing that we ourselves drape over our mathematical symbols - they do not belong to Nature, but to the parables by which we try to make Nature comprehensible." (Sir James H Jeans, "The New World-Picture of Modern Physics", Supplement to Nature, Vol. 134 (3384), 1934)

"Engineering is a profession, an art of action and synthesis and not simply a body of knowledge. Its highest calling is to invent and innovate." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"Scientific knowledge is not created solely by the piecemeal mining of discrete facts by uniformly accurate and reliable individual scientific investigations. The process of criticism and evaluation, of analysis and synthesis, are essential to the whole system. It is impossible for each one of us to be continually aware of all that is going on around us, so that we can immediately decide the significance of every new paper that is published. The job of making such judgments must therefore be delegated to the best and wisest among us, who speak, not with their own personal voices, but on behalf of the whole community of Science. […] It is impossible for the consensus - public knowledge - to be voiced at all, unless it is channeled through the minds of selected persons, and restated in their words for all to hear." (John M Ziman, "Public Knowledge: An Essay Concerning the Social Dimension of Science", 1968)

"Physics is not a finished logical system. Rather, at any moment it spans a great confusion of ideas, some that survive like folk epics from the heroic periods of the past, and others that arise like utopian novels from our dim premonitions of a future grand synthesis." (Steven Weinberg, "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity", 1972)

"Discovery is a double relation of analysis and synthesis together. As an analysis, it probes for what is there; but then, as a synthesis, it puts the parts together in a form by which the creative mind transcends the bare limits, the bare skeleton, that nature provides."(Jacob Bronowski, "The Ascent of Man", 1973)

"The main object of cybernetics is to supply adaptive, hierarchical models, involving feedback and the like, to all aspects of our environment. Often such modelling implies simulation of a system where the simulation should achieve the object of copying both the method of achievement and the end result. Synthesis, as opposed to simulation, is concerned with achieving only the end result and is less concerned (or completely unconcerned) with the method by which the end result is achieved. In the case of behaviour, psychology is concerned with simulation, while cybernetics, although also interested in simulation, is primarily concerned with synthesis." (Frank H George, "Soviet Cybernetics, the militairy and Professor Lerner", New Scientist, 1973)

"Science does not need mysticism and mysticism does not need science, but man needs both. Mystical experience is necessary to understand the deepest nature of things, and science is essential for modern life. What we need, therefore, is not a synthesis, but a dynamic interplay between mystical intuition and scientific analysis." (Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels Between Modern Physics and Eastern Mysticism", 1975)

"[…] the distinction between rigorous thinking and more vague ‘imaginings’; even in mathematics itself, all is not a question of rigor, but rather, at the start, of reasoned intuition and imagination, and, also, repeated guessing. After all, most thinking is a synthesis or juxtaposition of advances along a line of syllogisms - perhaps in a continuous and persistent ‘forward'’ movement, with searching, so to speak ‘sideways’, in directions which are not necessarily present from the very beginning and which I describe as ‘sending out exploratory patrols’ and trying alternative routes." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"A person who thinks by images becomes less and less capable of thinking by reasoning, and vice versa. The intellectual process based on images is contradictory to the intellectual process of reasoning that is related to the word. There are two different ways of dealing with an object. They involve not only different approaches, but even more important, opposing mental attitudes. This is not a matter of complementary processes, such as analysis and synthesis or logic and dialectic. These processes lack any qualitative common denominator." (Jacques Ellul, "The Humiliation of the Word", 1981)

"There are those who try to generalize, synthesize, and build models, and there are those who believe nothing and constantly call for more data. The tension between these two groups is a healthy one; science develops mainly because of the model builders, yet they need the second group to keep them honest." (Andrew Miall, "Principles of Sedimentary Basin Analysis", 1984)

"Just as physicists have created models of the atom based on observed data and intuitive synthesis of the patterns in their data, so must designers create models of users based on observed behaviors and intuitive synthesis of the patterns in the data. Only after we formalize such patterns can we hope to systematically construct patterns of interaction that smoothly match the behavior patterns, mental models, and goals of users. Personas provide this formalization." (Alan Cooper et al, "About Face 3: The Essentials of Interaction Design", 2007)

"Either one or the other [analysis or synthesis] may be direct or indirect. The direct procedure is when the point of departure is known-direct synthesis in the elements of geometry. By combining at random simple truths with each other, more complicated ones are deduced from them. This is the method of discovery, the special method of inventions, contrary to popular opinion." (André-Marie Ampère)

"The world is not dialectical - it is sworn to extremes, not to equilibrium, sworn to radical antagonism, not to reconciliation or synthesis." (Jean Baudrillard)

🦋Science: On Analysis (Quotes)

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"Analysis is the obtaining of the thing sought by assuming it and so reasoning up to an admitted truth; synthesis is the obtaining of the thing sought by reasoning up to the inference and proof of it." (Eudoxus, cca. 4th century BC)

"The analysis of concepts is for the understanding nothing more than what the magnifying glass is for sight." (Moses Mendelssohn, 1763)

"As the analysis of a substantial composite terminates only in a part which is not a whole, that is, in a simple part, so synthesis terminates only in a whole which is not a part, that is, the world." (Immanuel Kant, "Inaugural Dissertation", 1770)

"But ignorance of the different causes involved in the production of events, as well as their complexity, taken together with the imperfection of analysis, prevents our reaching the same certainty about the vast majority of phenomena. Thus there are things that are uncertain for us, things more or less probable, and we seek to compensate for the impossibility of knowing them by determining their different degrees of likelihood. So it was that we owe to the weakness of the human mind one of the most delicate and ingenious of mathematical theories, the science of chance or probability." (Pierre-Simon Laplace, "Recherches, 1º, sur l'Intégration des Équations Différentielles aux Différences Finies, et sur leur Usage dans la Théorie des Hasards", 1773)

"It has never yet been supposed, that all the facts of nature, and all the means of acquiring precision in the computation and analysis of those facts, and all the connections of objects with each other, and all the possible combinations of ideas, can be exhausted by the human mind." (Nicolas de Condorcet, "Outlines Of An Historical View Of The Progress Of The Human Mind", 1795)

"It is interesting thus to follow the intellectual truths of analysis in the phenomena of nature. This correspondence, of which the system of the world will offer us numerous examples, makes one of the greatest charms attached to mathematical speculations." (Pierre-Simon Laplace, "Exposition du système du monde", 1799)

"With the synthesis of every new concept in the aggregation of coordinate characteristics the extensive or complex distinctness is increased; with the further analysis of concepts in the series of subordinate characteristics the intensive or deep distinctness is increased. The latter kind of distinctness, as it necessarily serves the thoroughness and conclusiveness of cognition, is therefore mainly the business of philosophy and is carried farthest especially in metaphysical investigations." (Immanuel Kant, "Logic", 1800)

"It is easily seen from a consideration of the nature of demonstration and analysis that there can and must be truths which cannot be reduced by any analysis to identities or to the principle of contradiction but which involve an infinite series of reasons which only God can see through." (Gottfried W Leibniz, "Nouvelles lettres et opuscules inédits", 1857)

"Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts of the same method. Each is the relative and correlative of the other. Analysis, without a subsequent synthesis, is incomplete; it is a mean cut of from its end. Synthesis, without a previous analysis, is baseless; for synthesis receives from analysis the elements which it recomposes." (Sir William Hamilton, "Lectures on Metaphysics and Logic: 6th Lecture on Metaphysics", 1858)

"Hence, even in the domain of natural science the aid of the experimental method becomes indispensable whenever the problem set is the analysis of transient and impermanent phenomena, and not merely the observation of persistent and relatively constant objects." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)

"In fact, the opposition of instinct and reason is mainly illusory. Instinct, intuition, or insight is what first leads to the beliefs which subsequent reason confirms or confutes; but the confirmation, where it is possible, consists, in the last analysis, of agreement with other beliefs no less instinctive. Reason is a harmonising, controlling force rather than a creative one. Even in the most purely logical realms, it is insight that first arrives at what is new." (Bertrand Russell, "Our Knowledge of the External World", 1914)

"In obedience to the feeling of reality, we shall insist that, in the analysis of propositions, nothing 'unreal' is to be admitted. But, after all, if there is nothing unreal, how, it may be asked, could we admit anything unreal? The reply is that, in dealing with propositions, we are dealing in the first instance with symbols, and if we attribute significance to groups of symbols which have no significance, we shall fall into the error of admitting unrealities, in the only sense in which this is possible, namely, as objects described." (Bertrand Russell, "Introduction to Mathematical Philosophy" , 1919)

"It requires a very unusual mind to undertake the analysis of the obvious." (Alfred N Whitehead, "Science in the Modern World", 1925)

"The failure of the social sciences to think through and to integrate their several responsibilities for the common problem of relating the analysis of parts to the analysis of the whole constitutes one of the major lags crippling their utility as human tools of knowledge." (Robert S Lynd, "Knowledge of What?", 1939)

"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)

"Only by the analysis and interpretation of observations as they are made, and the examination of the larger implications of the results, is one in a satisfactory position to pose new experimental and theoretical questions of the greatest significance." (John A Wheeler, "Elementary Particle Physics", American Scientist, 1947)

"The study of the conditions for change begins appropriately with an analysis of the conditions for no change, that is, for the state of equilibrium." (Kurt Lewin, "Quasi-Stationary Social Equilibria and the Problem of Permanent Change", 1947)

"A synthetic approach where piecemeal analysis is not possible due to the intricate interrelationships of parts that cannot be treated out of context of the whole;" (Walter F Buckley, "Sociology and modern systems theory", 1967)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Discovery is a double relation of analysis and synthesis together. As an analysis, it probes for what is there; but then, as a synthesis, it puts the parts together in a form by which the creative mind transcends the bare limits, the bare skeleton, that nature provides."(Jacob Bronowski, "The Ascent of Man", 1973)

"The complexities of cause and effect defy analysis." (Douglas Adams, "Dirk Gently's Holistic Detective Agency", 1987)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Either one or the other [analysis or synthesis] may be direct or indirect. The direct procedure is when the point of departure is known-direct synthesis in the elements of geometry. By combining at random simple truths with each other, more complicated ones are deduced from them. This is the method of discovery, the special method of inventions, contrary to popular opinion." (André-Marie Ampère)

29 April 2021

🦋Science: On Facts (Quotes)

"[…] to kill an error is as good a service as, and sometimes even better than, the establishing of a new truth or fact." (Charles R Darwin, "More Letters of Charles Darwin", Vol 2, 1903)

"Entia non sunt multiplicanda praeter necessitatem. That is to say; before you try a complicated hypothesis, you should make quite sure that no simplification of it will explain the facts equally well." (Charles S Peirce," Pragmatism and Pragmaticism", [lecture] 1903)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"The facts of greatest outcome are those we think simple; may be they really are so, because they are influenced only by a small number of well-defined circumstances, may be they take on an appearance of simplicity because the various circumstances upon which they depend obey the laws of chance and so come to mutually compensate." (Henri Poincaré, "The Foundations of Science", 1913)

"The world is an endless variety of facts, linked together by necessary and immutable bonds." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"Statistics may be defined as numerical statements of facts by means of which large aggregates are analyzed, the relations of individual units to their groups are ascertained, comparisons are made between groups, and continuous records are maintained for comparative purposes." (Melvin T Copeland. "Statistical Methods" [in: Harvard Business Studies, Vol. III, Ed. by Melvin T Copeland, 1917])

"Facts are carpet-tacks under the pneumatic tires of theory." (Austin O’Malley, "Keystones of Thought", 1918)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919)

"[…] the mere collection of facts, without some basis of theory for guidance and elucidation, is foolish and profitless." (Gamaliel Bradford, "Darwin", 1926)

"Observed facts must be built up, woven together, ordered, arranged, systematized into conclusions and theories by reflection and reason, if they are to have full bearing on life and the universe. Knowledge is the accumulation of facts. Wisdom is the establishment of relations. And just because the latter process is delicate and perilous, it is all the more delightful." (Gamaliel Bradford, "Darwin", 1926)

"[…] facts are too bulky to be lugged about conveniently except on the wheels of theory." (Julian Huxley, "Essays of a Biologist", 1929)

"We can invent as many theories we like, and any one of them can be made to fit the facts. But that theory is always preferred which makes the fewest number of assumptions." (Albert Einstein [interview] 1929)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"In experimental science facts of the greatest importance are rarely discovered accidentally: more frequently new ideas point the way towards them." (Erwin Schrödinger, "Science and the Human Temperament", 1935)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"The fundamental gospel of statistics is to push back the domain of ignorance, prejudice, rule-of-thumb, arbitrary or premature decisions, tradition, and dogmatism and to increase the domain in which decisions are made and principles are formulated on the basis of analyzed quantitative facts." (Robert W Burgess, "The Whole Duty of the Statistical Forecaster", Journal of the American Statistical Association , Vol. 32, No. 200, 1937)

"With the help of physical theories we try to find our way through the maze of observed facts, to order and understand the world of our sense impressions." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"We can put it down as one of the principles learned from the history of science that a theory is only overthrown by a better theory, never merely by contradictory facts." (James B Conant, "On Understanding Science", 1947)

"To some people, statistics is ‘quartered pies, cute little battleships and tapering rows of sturdy soldiers in diversified uniforms’. To others, it is columns and columns of numerical facts. Many regard it as a branch of economics. The beginning student of the subject considers it to be largely mathematics." (The Editors, "Statistics, The Physical Sciences and Engineering", The American Statistician, Vol. 2, No. 4, 1948)

"A conceptual scheme is never discarded merely because of a few stubborn facts with which it cannot be reconciled; a conceptual scheme is either modified or replaced by a better one, never abandoned with nothing left to take its place." (James B Conant, "Science and Common Sense", 1951)

"The act of discovery escapes logical analysis; there are no logical rules in terms of which a 'discovery machine' could be constructed that would take over the creative function of the genius. But it is not the logician’s task to account for scientific discoveries; all he can do is to analyze the relation between given facts and a theory presented to him with the claim that it explains these facts. In other words, logic is concerned with the context of justification." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"The study of inductive inference belongs to the theory of probability, since observational facts can make a theory only probable but will never make it absolutely certain." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"[…] the grand aim of all science […] is to cover the greatest possible number of empirical facts by logical deductions from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)

"Science does not begin with facts; one of its tasks is to uncover the facts by removing misconceptions." (Lancelot L Whyte, "Accent on Form", 1954)

"Science is the creation of concepts and their exploration in the facts. It has no other test of the concept than its empirical truth to fact." (Jacob Bronowski, "Science and Human Values", 1956)

"When we meet a fact which contradicts a prevailing theory, we must accept the fact and abandon the theory, even when the theory is supported by great names and generally accepted." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1957)

"Science aims at the discovery, verification, and organization of fact and information [...] engineering is fundamentally committed to the translation of scientific facts and information to concrete machines, structures, materials, processes, and the like that can be used by men." (Eric A Walker, "Engineers and/or Scientists", Journal of Engineering Education Vol. 51, 1961)

"The important distinction between science and those other systematizations [i.e., art, philosophy, and theology] is that science is self-testing and self-correcting. Here the essential point of science is respect for objective fact. What is correctly observed must be believed [...] the competent scientist does quite the opposite of the popular stereotype of setting out to prove a theory; he seeks to disprove it." (George G Simpson, "Notes on the Nature of Science", 1962)

"It is not impossible that our own Model will die a violent death, ruthlessly smashed by an unprovoked assault of new facts […]. (Clive S Lewis, "The Discarded Image: An Introduction to Medieval and Renaissance Literature", 1964)

"A model is a qualitative or quantitative representation of a process or endeavor that shows the effects of those factors which are significant for the purposes being considered. A model may be pictorial, descriptive, qualitative, or generally approximate in nature; or it may be mathematical and quantitative in nature and reasonably precise. It is important that effective means for modeling be understood such as analog, stochastic, procedural, scheduling, flow chart, schematic, and block diagrams." (Harold Chestnut, "Systems Engineering Tools", 1965)

"A model is a useful (and often indispensable) framework on which to organize our knowledge about a phenomenon. […] It must not be overlooked that the quantitative consequences of any model can be no more reliable than the a priori agreement between the assumptions of the model and the known facts about the real phenomenon. When the model is known to diverge significantly from the facts, it is self-deceiving to claim quantitative usefulness for it by appeal to agreement between a prediction of the model and observation." (John R Philip, 1966)

"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)

"Models are not assigned per se uniquely to their originals. They perform their replacement function: a) for definite – cognitive and/or handling, model-using – subjects, b) within definite time intervals, c) under restrictions of definite operations of thought or fact. […] Models are not only models of something. They are also models for somebody, a human or an artificial model user. They perform thereby their functions in time, within a time interval. And finally, they are models for a definite purpose." (Herbert Stachowiak, "Allgemeine Modelltheorie", 1973)

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"Science has so accustomed us to devising and accepting theories to account for the facts we observe, however fantastic, that our minds must begin their manufacture before we are aware of it." (Gene Wolfe, "Seven American Nights", 1978)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"All great theories are expansive, and all notions so rich in scope and implication are underpinned by visions about the nature of things. You may call these visions ‘philosophy’, or ‘metaphor’, or ‘organizing principle’, but one thing they are surely not - they are not simple inductions from observed facts of the natural world." (Stephen J Gould, "Time’s Arrow, Time’s Cycle", 1987)

"Although science literally means ‘knowledge’, the scientific attitude is concerned much more with rational perception through the mind and with testing such perceptions against actual fact, in the form of experiments and observations." (David Bohm & F David Peat, "Science, Order, and Creativity", 1987)

"Facts do not 'speak for themselves'. They speak for or against competing theories. Facts divorced from theory or visions are mere isolated curiosities." (Thomas Sowell, "A Conflict of Visions: Ideological Origins of Political Struggles", 1987)

"[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion." (Francis H C Crick, "What Mad Pursuit: A Personal View of Scientific Discovery", 1988)

"The common perception of science as a rational activity, in which one confronts the evidence of fact with an open mind, could not be more false. Facts assume significance only within a pre-existing intellectual structure, which may be based as much on intuition and prejudice as on reason." (Walter Gratzer, The Guardian, 1989)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"Worldviews are social constructions, and they channel the search for facts. But facts are found and knowledge progresses, however fitfully. Fact and theory are intertwined, and all great scientists understand the interaction." (Stephen J Gould, "Shields of Expectation - and Actuality", 1993)

"As a result, surprisingly enough, scientific advance rarely comes solely through the accumulation of new facts. It comes most often through the construction of new theoretical frameworks. [..]  To understand scientific development, it is not enough merely to chronicle new discoveries and inventions. We must also trace the succession of worldviews" (Nancy R Pearcey & Charles B Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Theories rarely arise as patient inferences forced by accumulated facts. Theories are mental constructs potentiated by complex external prods (including, in idealized cases, a commanding push from empirical reality)." (Stephen J Gould, "Leonardo's Mountain of Clams and the Diet of Worms" , 1998)

"When we entrust the domain of values to those whose intellectual concerns are essentially centred on empirical facts, and whose conceptual frameworks are inevitably constructed around sets of empirical facts, we need not be surprised if the result is moral confusion." (Ronald W K Paterson, "The New Patricians", 1998)

"Modeling involves a style of scientific thinking in which the argument is structured by the model, but in which the application is achieved via a narrative prompted by an external fact, an imagined event or question to be answered." (Uskali Mäki, "Fact and Fiction in Economics: Models, Realism and Social Construction", 2002)

"We tackle a multifaceted universe one face at a time, tailoring our models and equations to fit the facts at hand. Whatever mechanical conception proves appropriate, that is the one to use. Discovering worlds within worlds, a practical observer will deal with each realm on its own terms. It is the only sensible approach to take." (Michael Munowitz, "Knowing: The Nature of Physical Law", 2005)

"Although fiction is not fact, paradoxically we need some fictions, particularly mathematical ideas and highly idealized models, to describe, explain, and predict facts.  This is not because the universe is mathematical, but because our brains invent or use refined and law-abiding fictions, not only for intellectual pleasure but also to construct conceptual models of reality." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"There are no surprising facts, only models that are surprised by facts; and if a model is surprised by the facts, it is no credit to that model." (Eliezer S Yudkowsky, "Quantum Explanations", 2008)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought." (Clifford A Pickover, "The Math Book", 2009)

"Each person has a different mental model and, therefore, potentially a different interpretation of the Facts. The danger comes when we start to assume that our interpretation of the Facts is the only interpretation and we believe that what we see and think is the Truth, and that there is only one Truth." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010)

"Relevance is not something you can predict. It is something you discover after the fact." (Thomas Sowell, "The Thomas Sowell Reader", 2011)

"Science does not live with facts alone. In addition to facts, it needs models. Scientific models fulfill two main functions with respect to empirical facts." (Andreas Bartels [in "Models, Simulations, and the Reduction of Complexity", Ed. by Ulrich Gähde et al, 2013)

"A mental representation is a mental structure that corresponds to an object, an idea, a collection of information, or anything else, concrete or abstract, that the brain is thinking about. […] Because the details of mental representations can differ dramatically from field to field, it’s hard to offer an overarching definition that is not too vague, but in essence these representations are preexisting patterns of information - facts, images, rules, relationships, and so on - that are held in long-term memory and that can be used to respond quickly and effectively in certain types of situations." (Anders Ericsson & Robert Pool," Peak: Secrets from  the  New  Science  of  Expertise", 2016)

"Statistics is the science of collecting, organizing, and interpreting numerical facts, which we call data. […] Statistics is the science of learning from data." (Moore McCabe & Alwan Craig, "The Practice of Statistics for Business and Economics" 4th Ed., 2016)

"That is the trouble with facts: they sometimes force you to conclusions that differ with your intuition." (Steven G Krantz, "A Primer of Mathematical Writing" 2nd Ed., 2016)

28 April 2021

🦋Science: On Precision (Quotes)

 "Simplicity and precision ought to be the characteristics of a scientific nomenclature: words should signify things, or the analogies of things, and not opinions." (Sir Humphry Davy, Elements of Chemical Philosophy", 1812)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"Numerical facts, like other facts, are but the raw materials of knowledge, upon which our reasoning faculties must be exerted in order to draw forth the principles of nature. [...] Numerical precision is the soul of science [...]" (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890)

"Physical research by experimental methods is both a broadening and a narrowing field. There are many gaps yet to be filled, data to be accumulated, measurements to be made with great precision, but the limits within which we must work are becoming, at the same time, more and more defined." (Elihu Thomson, "Annual Report of the Board of Regents of the Smithsonian Institution", 1899)

"The apodictic quality of mathematical thought, the certainty and correctness of its conclusions, are due, not to a special mode of ratiocination, but to the character of the concepts with which it deals. What is that distinctive characteristic? I answer: precision, sharpness, completeness of definition. But how comes your mathematician by such completeness? There is no mysterious trick involved; some ideas admit of such precision, others do not; and the mathematician is one who deals with those that do." (Cassius J Keyser, "The Universe and Beyond", Hibbert Journal Vol. 3, 1904–1905)

"It is difficult to find an intelligible account of the meaning of ‘probability’, or of how we are ever to determine the probability of any particular proposition; and yet treatises on the subject profess to arrive at complicated results of the greatest precision and the most profound practical importance." (John M Keynes, "A Treatise on Probability", 1921)

"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "A Scientific Autobiography", 1949)

"Precision is expressed by an international standard, viz., the standard error. It measures the average of the difference between a complete coverage and a long series of estimates formed from samples drawn from this complete coverage by a particular procedure or drawing, and processed by a particular estimating formula." (W Edwards Deming, "On the Presentation of the Results of Sample Surveys as Legal Evidence", Journal of the American Statistical Association Vol 49 (268), 1954)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"It is of course desirable to work with manageable models which maximize generality, realism, and precision toward the overlapping but not identical goals of understanding, predicting, and modifying nature. But this cannot be done." (Richard Levins, "The strategy of model building in population biology", American Scientist Vol. 54 (4), 1966) 

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Simplicity is worth buying if we do not have to pay too great a loss of precision for it." (George Pólya, "Mathematical Methods in Science", 1977)

"Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable." (Stephen Wolfram, Undecidability and intractability in theoretical physics", Physical Review Letters 54 (8), 1985)

"Negative feedback only improves the precision of goal-seeking, but does not determine it. Feedback devices are only executive mechanisms that operate during the translation of a program." (Ernst Mayr, "Toward a New Philosophy of Biology: Observations of an Evolutionist", 1988)

"A mathematical model uses mathematical symbols to describe and explain the represented system. Normally used to predict and control, these models provide a high degree of abstraction but also of precision in their application." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, “The Poincaré Conjecture”, 2007)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"Repeated observations of the same phenomenon do not always produce the same results, due to random noise or error. Sampling errors result when our observations capture unrepresentative circumstances, like measuring rush hour traffic on weekends as well as during the work week. Measurement errors reflect the limits of precision inherent in any sensing device. The notion of signal to noise ratio captures the degree to which a series of observations reflects a quantity of interest as opposed to data variance. As data scientists, we care about changes in the signal instead of the noise, and such variance often makes this problem surprisingly difficult." (Steven S Skiena, "The Data Science Design Manual", 2017)

🦋Science: On Observation (Quotes)

"[…] it is not necessary that these hypotheses should be true, or even probably; but it is enough if they provide a calculus which fits the observations […]" (Andrew Osiander, "On the Revolutions of the Heavenly Spheres", 1543)

"[…] it is from long experience chiefly that we are to expect the most certain rules of practice, yet it is withal to be remembered, that observations, and to put us upon the most probable means of improving any art, is to get the best insight we can into the nature and properties of those things which we are desirous to cultivate and improve." (Stephen Hales, "Vegetable Staticks", 1727) 

"Those who have not imbibed the prejudices of philosophers, are easily convinced that natural knowledge is to be founded on experiment and observation." (Colin Maclaurin, "An Account of Sir Isaac Newton’s Philosophical Discoveries", 1748)

"We have three principal means: observation of nature, reflection, and experiment. Observation gathers the facts reflection combines them, experiment verifies the result of the combination. It is essential that the observation of nature be assiduous, that reflection be profound, and that experimentation be exact. Rarely does one see these abilities in combination. And so, creative geniuses are not common." (Denis Diderot, "On the Interpretation of Nature", 1753)

"Facts, observations, experiments - these are the materials of a great edifice, but in assembling them we must combine them into classes, distinguish which belongs to which order and to which part of the whole each pertains." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"On the other hand, if we add observation to observation, without attempting to draw no only certain conclusions, but also conjectural views from them, we offend against the very end for which only observations ought to be made." (Friedrich W Herschel, "On the Construction of the Heavens", Philosophical Transactions of the Royal Society of London Vol. LXXV, 1785)

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"The art of drawing conclusions from experiments and observations consists in evaluating probabilities and in estimating whether they are sufficiently great or numerous enough to constitute proofs. This kind of calculation is more complicated and more difficult than it is commonly thought to be […]" (Antoine-Laurent Lavoisier, cca. 1790)

"We must trust to nothing but facts: These are presented to us by Nature, and cannot deceive. We ought, in every instance, to submit our reasoning to the test of experiment, and never to search for truth but by the natural road of experiment and observation." (Antoin-Laurent de Lavoisiere, "Elements of Chemistry", 1790)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"Primary causes are unknown to us; but are subject to simple and constant laws, which may be discovered by observation, the study of them being the object of natural philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

"The framing of hypotheses is, for the enquirer after truth, not the end, but the beginning of his work. Each of his systems is invented, not that he may admire it and follow it into all its consistent consequences, but that he may make it the occasion of a course of active experiment and observation. And if the results of this process contradict his fundamental assumptions, however ingenious, however symmetrical, however elegant his system may be, he rejects it without hesitation. He allows no natural yearning for the offspring of his own mind to draw him aside from the higher duty of loyalty to his sovereign, Truth, to her he not only gives his affections and his wishes, but strenuous labour and scrupulous minuteness of attention." (William Whewell, "Philosophy of the Inductive Sciences" Vol. 2, 1847)

"In the fields of observation chance favors only the prepared mind." (Louis Pasteur, [lecture] 1854)

"When a power of nature, invisible and impalpable, is the subject of scientific inquiry, it is necessary, if we would comprehend its essence and properties, to study its manifestations and effects. For this purpose simple observation is insufficient, since error always lies on the surface, whilst truth must be sought in deeper regions." (Justus von Liebig," Familiar Letters on Chemistry", 1859)

"Observation is so wide awake, and facts are being so rapidly added to the sum of human experience, that it appears as if the theorizer would always be in arrears, and were doomed forever to arrive at imperfect conclusion; but the power to perceive a law is equally rare in all ages of the world, and depends but little on the number of facts observed." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"An anticipative idea or an hypothesis is, then, the necessary starting point for all experimental reasoning. Without it, we could not make any investigation at all nor learn anything; we could only pile up sterile observations. If we experiment without a preconceived idea, we should move at random […]" (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Men who have excessive faith in their theories or ideas are not only ill prepared for making discoveries; they also make very poor observations." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Only within very narrow boundaries can man observe the phenomena which surround him; most of them naturally escape his senses, and mere observation is not enough." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"[…] wrong hypotheses, rightly worked from, have produced more useful results than unguided observation." (Augustus de Morgan, "A Budget of Paradoxes", 1872)

"Every science begins by accumulating observations, and presently generalizes these empirically; but only when it reaches the stage at which its empirical generalizations are included in a rational generalization does it become developed science." (Herbert Spencer, "The Data of Ethics", 1879)

"Science is the observation of things possible, whether present or past; prescience is the knowledge of things which may come to pass, though but slowly." (Leonardo da Vinci, "The Notebooks of Leonardo da Vinci", 1883)

"Even one well-made observation will be enough in many cases, just as one well-constructed experiment often suffices for the establishment of a law." (Émile Durkheim, "The Rules of Sociological Method", "The Rules of Sociological Method", 1895)

"Every experiment, every observation has, besides its immediate result, effects which, in proportion to its value, spread always on all sides into ever distant parts of knowledge." (Sir Michael Foster, "Annual Report of the Board of Regents of the Smithsonian Institution", 1898)

"The primary basis of all scientific thinking is observation." (Douglas Marsland, "Principles of Modern Biology", 1899)

"To observe is not enough. We must use our observations, and to do that we must generalize." (Henri Poincaré, "Science and Hypothesis", 1902)

"An isolated sensation teaches us nothing, for it does not amount to an observation. Observation is a putting together of several results of sensation which are or are supposed to be connected with each other according to the law of causality, so that some represent causes and others their effects." (Thorvald N Thiele, "Theory of Observations", 1903)

"Man's determination not to be deceived is precisely the origin of the problem of knowledge. The question is always and only this: to learn to know and to grasp reality in the midst of a thousand causes of error which tend to vitiate our observation." (Federigo Enriques, "Problems of Science", 1906)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"Neither logic without observation, nor observation without logic, can move one step in the formation of science." (Alfred N Whitehead, "The Organization of Thought", 1916)

"A discovery is rarely, if ever, a sudden achievement, nor is it the work of one man; a long series of observations, each in turn received in doubt and discussed in hostility, are familiarized by time, and lead at last to the gradual disclosure of truth." (Sir Berkeley Moynihan, "Surgery, Gynecology & Obstetrics" Vol. 31, 1920)

"In the world of natural knowledge, no authority is great enough to support a theory when a crucial observation has shown it to be untenable." (Sir Richard A Gregory, "Discovery; or, The Spirit and Service of Science", 1928)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"Abstraction is the detection of a common quality in the characteristics of a number of diverse observations […] A hypothesis serves the same purpose, but in a different way. It relates apparently diverse experiences, not by directly detecting a common quality in the experiences themselves, but by inventing a fictitious substance or process or idea, in terms of which the experience can be expressed. A hypothesis, in brief, correlates observations by adding something to them, while abstraction achieves the same end by subtracting something." (Herbert Dingle, Science and Human Experience, 1931)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"Starting from statistical observations, it is possible to arrive at conclusions which not less reliable or useful than those obtained in any other exact science. It is only necessary to apply a clear and precise concept of probability to such observations. " (Richard von Mises, "Probability, Statistics, and Truth", 1939)

"Experiment as compared with mere observation has some of the characteristics of cross-examining nature rather than merely overhearing her." (Alan Gregg, "The Furtherance of Medical Research", 1941)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"We see what we want to see, and observation conforms to hypothesis." (Bergen Evans, "The Natural History of Nonsense", 1947)

"[...] the conception of chance enters in the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception that causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation." (Max Born, 1949)

"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)

"Science is an interconnected series of concepts and schemes that have developed as a result of experimentation and observation and are fruitful of further experimentation and observation."(James B Conant, "Science and Common Sense", 1951)

"The stumbling way in which even the ablest of the scientists in every generation have had to fight through thickets of erroneous observations, misleading generalizations, inadequate formulations, and unconscious prejudice is rarely appreciated by those who obtain their scientific knowledge from textbooks." (James B Conant, "Science and Common Sense", 1951)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"The discrete change has only to become small enough in its jump to approximate as closely as is desired to the continuous change. It must further be remembered that in natural phenomena the observations are almost invariably made at discrete intervals; the 'continuity' ascribed to natural events has often been put there by the observer's imagina- tion, not by actual observation at each of an infinite number of points. Thus the real truth is that the natural system is observed at discrete points, and our transformation represents it at discrete points. There can, therefore, be no real incompatibility." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"Observation, reason, and experiment make up what we call the scientific method. (Richard Feynman, "Mainly mechanics, radiation, and heat", 1963)

"As soon as we inquire into the reasons for the phenomena, we enter the domain of theory, which connects the observed phenomena and traces them back to a single ‘pure’ phenomena, thus bringing about a logical arrangement of an enormous amount of observational material." (Georg Joos, "Theoretical Physics", 1968)

"[…] the link between observation and formulation is one of the most difficult and crucial in the scientific enterprise. It is the process of interpreting our theory or, as some say, of ‘operationalizing our concepts’. Our creations in the world of possibility must be fitted in the world of probability; in Kant’s epigram, ‘Concepts without precepts are empty’. It is also the process of relating our observations to theory; to finish the epigram, ‘Precepts without concepts are blind’." (Scott Greer, "The Logic of Social Inquiry", 1969)

"Innocent, unbiased observation is a myth." (Sir Peter B Medawar, Induction and Intuition in Scientific Thought, 1969)

"The advantages of models are, on one hand, that they force us to present a 'complete' theory by which I mean a theory taking into account all relevant phenomena and relations and, on the other hand, the confrontation with observation, that is, reality." (Jan Tinbergen, "The Use of Models: Experience," 1969)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"All perceiving is also thinking, all reasoning is also intuition, all observation is also invention." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974)

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"The essential function of a hypothesis consists in the guidance it affords to new observations and experiments, by which our conjecture is either confirmed or refuted." (Ernst Mach, "Knowledge and Error: Sketches on the Psychology of Enquiry", 1976)

"After all of this it is a miracle that our models describe anything at all successfully. In fact, they describe many things well: we observe what they have predicted, and we understand what we observe. However, this last act of observation and understanding always eludes physical description." (Yuri I Manin, "Mathematics and Physics", 1981)

"Science is a process. It is a way of thinking, a manner of approaching and of possibly resolving problems, a route by which one can produce order and sense out of disorganized and chaotic observations. Through it we achieve useful conclusions and results that are compelling and upon which there is a tendency to agree." (Isaac Asimov, "‘X’ Stands for Unknown", 1984)

"Science is defined as a set of observations and theories about observations." (F Albert Matsen, "The Role of Theory in Chemistry", Journal of Chemical Education Vol. 62 (5), 1985)

"The only touchstone for empirical truth is experiment and observation." (Heinz Pagels, "Perfect Symmetry: The Search for the Beginning of Time", 1985)

"The model is only a suggestive metaphor, a fiction about the messy and unwieldy observations of the real world. In order for it to be persuasive, to convey a sense of credibility, it is important that it not be too complicated and that the assumptions that are made be clearly in evidence. In short, the model must be simple, transparent, and verifiable." (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)

"A theory is a good theory if it satisfies two requirements: it must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations." (Stephen Hawking, "A Brief History of Time: From Big Bang To Black Holes", 1988)

"A law explains a set of observations; a theory explains a set of laws. […] a law applies to observed phenomena in one domain (e.g., planetary bodies and their movements), while a theory is intended to unify phenomena in many domains. […] Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism." (John L Casti, "Searching for Certainty: How Scientists Predict the Future", 1990)

"A model is often judged by how well it 'explains' some observations. There need not be a unique model for a particular situation, nor need a model cover every possible special case. A model is not reality, it merely helps to explain some of our impressions of reality. [...] Different models may thus seem to contradict each other, yet we may use both in their appropriate places." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"The ability of a scientific theory to be refuted is the key criterion that distinguishes science from metaphysics. If a theory cannot be refuted, if there is no observation that will disprove it, then nothing can prove it - it cannot predict anything, it is a worthless myth." (Eric Lerner, "The Big Bang Never Happened", 1991)

"It is in the nature of theoretical science that there can be no such thing as certainty. A theory is only ‘true’ for as long as the majority of the scientific community maintain the view that the theory is the one best able to explain the observations." (Jim Baggott, "The Meaning of Quantum Theory", 1992)

"The art of science is knowing which observations to ignore and which are the key to the puzzle." (Edward W Kolb, "Blind Watchers of the Sky", 1996)

"The rate of the development of science is not the rate at which you make observations alone but, much more important, the rate at which you create new things to test." (Richard Feynman, "The Meaning of It All", 1998)

"[…] because observations are all we have, we take them seriously. We choose hard data and the framework of mathematics as our guides, not unrestrained imagination or unrelenting skepticism, and seek the simplest yet most wide-reaching theories capable of explaining and predicting the outcome of today’s and future experiments." (Brian Greene, "The Fabric of the Cosmos", 2004)

"A model is a good model if it:1. Is elegant 2. Contains few arbitrary or adjustable elements 3. Agrees with and explains all existing observations 4. Makes detailed predictions about future observations that can disprove or falsify the model if they are not borne out." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

24 April 2021

🦋Science: On Discovery (Quotes)

"[…] chance, that is, an infinite number of events, with respect to which our ignorance will not permit us to perceive their causes, and the chain that connects them together. Now, this chance has a greater share in our education than is imagined. It is this that places certain objects before us and, in consequence of this, occasions more happy ideas, and sometimes leads us to the greatest discoveries […]" (Claude Adrien Helvetius, "On Mind", 1751)

"If an inquiry thus carefully conducted should fail at last of discovering the truth, it may answer an end perhaps as useful, in discovering to us the weakness of our own understanding. If it does not make us knowing, it may make us modest. If it does not preserve us from error, it may at least from the spirit of error; and may make us cautious of pronouncing with positiveness or with haste, when so much labour may end in so much uncertainty." (Edmund Burke, "Essay on the Sublime and Beautiful", 1756)

"Cultivate that kind of knowledge which enables us to discover for ourselves in case of need that which others have to read or be told of." (Georg C Lichtenberg, Notebook D, 1773-1775)

"It falls into this difficulty without any fault of its own. It begins with principles, which cannot be dispensed with in the field of experience, and the truth and sufficiency of which are, at the same time, insured by experience. With these principles it rises, in obedience to the laws of its own nature, to ever higher and more remote conditions. But it quickly discovers that, in this way, its labours must remain ever incomplete, because new questions never cease to present themselves; and thus it finds itself compelled to have recourse to principles which transcend the region of experience, while they are regarded by common sense without distrust. It thus falls into confusion and contradictions, from which it conjectures the presence of latent errors, which, however, it is unable to discover, because the principles it employs, transcending the limits of experience, cannot be tested by that criterion. The arena of these endless contests is called Metaphysic." (Immanuel Kant, "The Critique of Pure Reason", 1781)

"This schematism of our understanding, in its application to appearances and their mere form, is an art concealed in the depths of the human soul, whose real modes of activity nature is hardly likely ever to allow us to discover, and to have open to our gaze." (Immanuel Kant, "Critique of Pure Reason", 1781)

"A good method of discovery is to imagine certain members of a system removed and then see how what is left would behave: for example, where would we be if iron were absent from the world: this is an old example." (Georg C Lichtenberg, Notebook J, 1789-1793)

"Every science has for its basis a system of principles as fixed and unalterable as those by which the universe is regulated and governed. Man cannot make principles; he can only discover them." (Thomas Paine, "The Age of Reason", 1794)

"[…] there do exist among us doctrines of solid and acknowledged certainty, and truths of which the discovery has been received with universal applause. These constitute what we commonly term Sciences; and of these bodies of exact and enduring knowledge, we have within our reach so large and varied a collection, that we may examine them, and the history of their formation, with good prospect of deriving from the study such instruction as we seek." (William Whewell, "The Philosophy of the Inductive Sciences Founded upon Their History" Vol. 1, 1847)

"To get to know, to discover, to publish - this is the destiny of a scientist." (François Arago, "De L’Utilité des Pensions", 1855)

"We learn wisdom from failure much more than from success. We often discover what will do, by finding out what will not do; and probably he who never made a mistake never made a discovery." (Samuel Smiles, "Facilities and Difficulties", 1859)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"It has often been said that, to make discoveries, one must be ignorant. This opinion, mistaken in itself, nevertheless conceals a truth. It means that it is better to know nothing than to keep in mind fixed ideas based on theories whose confirmation we constantly seek, neglecting meanwhile everything that fails to agree with them." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"The discoverer and the poet are inventors; and they are so because their mental vision detects the unapparent, unsuspected facts, almost as vividly as ocular vision rests on the apparent and familiar." (George H Lewes, "Principles of Success in Literature", 1865)

"Every process has laws, known or unknown, according to which it must take place. A consciousness of them is so far from being necessary to the process, that we cannot discover what they are, except by analyzing the results it has left us." (Lord William T Kelvin , "An Outline of the Necessary Laws of Thought", 1866)

"It is notorious that the same discovery is frequently made simultaneously and quite independently, by different persons. […] It would seem, that discoveries are usually made when the time is ripe for them - that is to say, when the ideas from which they naturally flow are fermenting in the minds of many men." (Sir Francis Galton, "Hereditary Genius", 1869)

"Accurate and minute measurement seems to the nonscientific imagination a less lofty and dignified work than looking for something new. But nearly all the grandest discoveries of science have been but the rewards of accurate measurement and patient long contained labor in the minute sifting of numerical results." (William T Kelvin, "Report of the British Association For the Advancement of Science" Vol. 41, 1871)

"Modern discoveries have not been made by large collections of facts, with subsequent discussion, separation, and resulting deduction of a truth thus rendered perceptible. A few facts have suggested an hypothesis, which means a supposition, proper to explain them. The necessary results of this supposition are worked out, and then, and not till then, other facts are examined to see if their ulterior results are found in Nature." (Augustus de Morgan, "A Budget of Paradoxes", 1872)

"Science arises from the discovery of Identity amid Diversity." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Great inventions are never, and great discoveries are seldom, the work of any one mind. Every great invention is really an aggregation of minor inventions, or the final step of a progression. It is not usually a creation, but a growth, as truly so as is the growth of the trees in the forest." (Robert H Thurston, "The Growth of the Steam Engine", Popular Science, 1877) 

"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notions, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part. […] The truest theories involve suppositions which are inconceivable, and no limit can really be placed to the freedom of hypotheses." (W Stanley Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1877)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"The philosopher believes that the value of his philosophy lies in the whole, in the building: posterity discovers it in the bricks with which he built and which are then often used again for better building: in the fact, that is to say, that building can be destroyed and nonetheless possess value as material." (Friedrich Nietzsche, "Human, all-too-human", 1878)

"In that pure enjoyment experienced on approaching to the ideal, in that eagerness to draw aside the veil from the hidden truth, and even in that discord which exists between the various workers, we ought to see the surest pledges of further scientific success. Science thus advances, discovering new truths, and at the same time obtaining practical results." (Dmitry I Mendeleev, "The Principles of Chemistry" Vol. 1, 1891)

"All great scientists have, in a certain sense, been great artists; the man with no imagination may collect facts, but he cannot make great discoveries." (Karl Pearson, "The Grammar of Science", 1892)

"There is no subject more captivating, more worthy of study, than nature. To understand this great mechanism, to discover the forces which are active, and the laws which govern them, is the highest aim of the intellect of man." (Nikola Tesla, "The Inventions, Researches and Writings of Nikola Tesla|, 1894)

"It is they who hold the secret of the mysterious property of the mind by which error ministers to truth, and truth slowly but irrevocably prevails. Theirs is the logic of discovery, the demonstration of the advance of knowledge and the development of ideas, which as the earthly wants and passions of men remain almost unchanged, are the charter of progress, and the vital spark in history." (Lord John Acton, "The Study of History", [lecture delivered at Cambridge] 1895)

"The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us." (Paul Valéry, "Introduction to the Method of Leonardo da Vinci", 1895)

"If we study the history of science we see happen two inverse phenomena […] Sometimes simplicity hides under complex appearances; sometimes it is the simplicity which is apparent, and which disguises extremely complicated realities. […] No doubt, if our means of investigation should become more and more penetrating, we should discover the simple under the complex, then the complex under the simple, then again the simple under the complex, and so on, without our being able to foresee what will be the last term. We must stop somewhere, and that science may be possible, we must stop when we have found simplicity. This is the only ground on which we can rear the edifice of our generalizations." (Henri Poincaré, "Science and Hypothesis", 1901)

"The most important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplemented in consequence by new discoveries is exceedingly remote." (Albert Michelson, 1903)

"It is a matter of primary importance in the cultivation of those sciences in which truth is discoverable by the human intellect that the investigator should be free, independent, unshackled in his movement; that he should be allowed and enabled to fix his mind intently, nay, exclusively, on his special object, without the risk of being distracted every other minute in the process and progress of his inquiry by charges of temerariousness, or by warnings against extravagance or scandal." (John H Newman, "The Idea of a University Defined and Illustrated", 1905)

"First [...] a new theory is attacked as absurd; then it is admitted to be true, but obvious and insignificant; finally it is seen to be so important that its adversaries claim they themselves discovered it." (William James, "Pragmatism: A New Name for Some Old Ways of Thinking", 1907)

"Human reason has discovered many amazing things in nature and will discover still more, and will thereby increase its power over nature." (Vladimir Lenin, "Materialism and Empirio-Criticism", 1908)

"The only true voyage of discovery […] would be not to visit new landscapes, but to possess other eyes, to see the universe through the eyes of another, of a hundred others, to see the hundred universes that each of them sees." (Marcel Proust, "À la recherche du temps perdu", 1913)

"To come very near to a true theory, and to grasp its precise application, are two very different things, as the history of a science teaches us. Everything of importance has been said before by somebody who did not discover it." (Alfred N Whitehead, "The Organization of Thought", 1917)

"Most teachers waste their time by asking questions which are intended to discover what a pupil does not know whereas the true art of questioning has for its purpose to discover what the pupil knows or is capable of knowing." (Albert Einstein, 1920)

"A man of genius makes no mistakes. His errors are volitional and are the portals of discovery." (James Joyce, "Ulysses", 1922)

"The story of scientific discovery has its own epic unity - a unity of purpose and endeavour - the single torch passing from hand to hand through the centuries; and the great moments of science when, after long labour, the pioneers saw their accumulated facts falling into a significant order - sometimes in the form of a law that revolutionised the whole world of thought - have an intense human interest, and belong essentially to the creative imagination of poetry." (Alfred Noyes, "Watchers of the Sky", 1922)

"Great scientific discoveries have been made by men seeking to verify quite erroneous theories about the nature of things." (Aldous L Huxley, "Life and Letters and the London Mercury" Vol. 1, 1928)

"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’" (Ludwig von Bertalanffy, "Kritische Theorie der Formbildung", 1928)

"The art of discovery is confused with the logic of proof and an artificial simplification of the deeper movements of thought results. We forget that we invent by intuition though we prove by logic." (Sarvepalli Radhakrishnan, "An Idealist View of Life", 1929)

"To those who study her, Nature reveals herself as extraordinarily fertile and ingenious in devising means, but she has no ends which the human mind has been able to discover or comprehend." (Joseph W Krutch, "The Modern Temper", 1929)

"The man who discovers a new scientific truth has previously had to smash to atoms almost everything he had learnt, and arrives at the new truth with hands blood stained from the slaughter of a thousand platitudes." (Jose Ortega y Gasset, "The Revolt of the Masses", 1930)

"It is this ideal of progress through cumulative effort rather than through genius - progress by organised effort, progress which does not wait for some brilliant stroke, some lucky discovery, or the advent of some superman, has been the chief gift of science to social philosophy." (William Wickenden, [Address to 48th annual summer convention of the American Institute of Electriccal Engineers, Cleveland] 1932)

"Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of them without any practical purpose whatsoever in view." (Max Planck, "Where is Science Going?", 1932)

"There is no such thing as a logical method of having new ideas or a logical reconstruction of this process […] very discovery contains an ‘irrational element’ or a ‘creative intuition’." (Karl Popper, "The logic of scientific discover", 1934)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1935)

"In experimental science facts of the greatest importance are rarely discovered accidentally: more frequently new ideas point the way towards them." (Erwin Schrödinger, "Science and the Human Temperament", 1935)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935) 

"A scientifically unimportant discovery is one which, however true and however interesting for other reasons, has no consequences for a system of theory with which scientists in that field are concerned." (Talcott Parsons, "The Structure of Social Action", 1937)

"Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery." (George Polya, "How to solve it", 1944) 

"It is always more easy to discover and proclaim general principles than it is to apply them." (Winston Churchill, "The Second World War: The gathering storm", 1948)

"Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all." (Norbert Wiener, "The Human Use of Human Beings", 1949)

"Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all." (Norbert Wiener, "Human Use of Human Beings: Cybernetics and Society", 1950)

"The scientist who discovers a theory is usually guided to his discovery by guesses; he cannot name a method by means of which he found the theory and can only say that it appeared plausible to him, that he had the right hunch or that he saw intuitively which assumption would fit the facts." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"A discovery in science, or a new theory, even when it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalysed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow; it takes a vast world unchallenged and for granted. This is one reason why, however great the novelty or scope of new discovery, we neither can, nor need, rebuild the house of the mind very rapidly. This is one reason why science, for all its revolutions, is conservative. This is why we will have to accept the fact that no one of us really will ever know very much. This is why we shall have to find comfort in the fact that, taken together, we know more and more." (J. Robert Oppenheimer, Science and the Common Understanding, 1954)

"It is important for him who wants to discover not to confine himself to one chapter of science, but to keep in touch with various others." (Jacques S Hadamard, "An Essay on the Psychology of Invention in the Mathematical Field", 1954)

"The true aim of science is to discover a simple theory which is necessary and sufficient to cover the facts, when they have been purified of traditional prejudices." (Lancelot L Whyte, "Accent on Form", 1954)

"There comes a point where the mind takes a leap - call it intuition or what you will - and comes out upon a higher plane of knowledge, but can never prove how it got there. All great discoveries have involved such a leap." (Albert Einstein, [interview in Life, "Death of a Genius"] 1955)

"At bottom, the society of scientists is more important than their discoveries. What science has to teach us here is not its techniques but its spirit: the irresistible need to explore." (Jacob Bronowski, "Science and Human Values", 1956)

"A change in science, whether novelty or discovery, when properly understood, when the linguistic problem is adequately solved, will even then provide only a hunch, a starting point for looking at an area of experience other than the science in which it was nourished and born." (J Robert Oppenheimer, "The Growth of Science and the Structure of Culture", Daedalus, 1958) 

"Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up." (Leopold Infeld, "The Evolution of Physics", 1961)

"We must now ask how changes of this sort can come about, considering first discoveries, or novelties of fact, and then inventions, or novelties of theory. That distinction between discovery and invention or between fact and theory will, however, immediately prove to be exceedingly artificial." (Thomas Kuhn, "The Structure of Scientific Revolutions", 1962)

"Discovery follows discovery, each both raising and answering questions, each ending a long search, and each providing the new instruments for a new search." (J Robert Oppenheimer, "Prospects in the Arts and Sciences", 1964)

"[…] the human reason discovers new relations between things not by deduction, but by that unpredictable blend of speculation and insight […] induction, which - like other forms of imagination - cannot be formalized." (Jacob Bronowski, "The Reach of Imagination", 1967)

"Discovery always carries an honorific connotation. It is the stamp of approval on a finding of lasting value. Many laws and theories have come and gone in the history of science, but they are not spoken of as discoveries. […] Theories are especially precarious, as this century profoundly testifies. World views can and do often change. Despite these difficulties, it is still true that to count as a discovery a finding must be of at least relatively permanent value, as shown by its inclusion in the generally accepted body of scientific knowledge." (Richard J. Blackwell, "Discovery in the Physical Sciences", 1969)

"A discovery must be, by definition, at variance with existing knowledge." (Albert Szent-Gyorgyi, "Dionysians and Apollonians", Science 176, 1972)

"Taken as a story of human achievement, and human blindness, the discoveries in the sciences are among the great epics." (J Robert Oppenheimer, "Reflections on the resonances of physics history" , 1972) 

"Discoveries are made by pursuing possibilities suggested by existing knowledge." (Michael Polanyi, "Meaning", 1975)

"Metaphysics attempts to discover the ultimate nature of reality, and in this sense, the innerspace of science fiction is metaphysical fiction." (Kate Wilhelm, 1974)

"It is one of our most exciting discoveries that local discovery leads to a complex of further discoveries. Corollary to this we find that we no sooner get a problem solved than we are overwhelmed with a multiplicity of additional problems in a most beautiful payoff of heretofore unknown, previously unrecognized, and as-yet unsolved problems." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"You cannot learn, through common sense, how things are you can only discover where they fit into the existing scheme of things." (Stuart Hall, 1977)

"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces. " (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"It is hard for us today to assimilate all the new ideas that are being suggested in response to the new information we have. We must remember that our picture of the universe is based not only on our scientific knowledge but also on our culture and our philosophy. What new discoveries lie ahead no one can say. There may well be civilizations in other parts of our galaxy or in other galaxies that have already accomplished much of what lies ahead for mankind. Others may just be beginning. The universe clearly presents an unending challenge." (Necia H Apfel & J Allen Hynek, "Architecture of the Universe", 1979)

"The joy of suddenly learning a former secret and the joy of suddenly discovering a hitherto unknown truth are the same to me - both have the flash of enlightenment, the almost incredibly enhanced vision, and the ecstasy and euphoria of released tension." (Paul R Halmos, "I Want to Be a Mathematician", 1985)

"[…] there is an external world which can in principle be exhaustively described in scientific language. The scientist, as both observer and language-user, can capture the external facts of the world in propositions that are true if they correspond to the facts and false if they do not. Science is ideally a linguistic system in which true propositions are in one-to-one relation to facts, including facts that are not directly observed because they involve hidden entities or properties, or past events or far distant events. These hidden events are described in theories, and theories can be inferred from observation, that is, the hidden explanatory mechanism of the world can be discovered from what is open to observation. Man as scientist is regarded as standing apart from the world and able to experiment and theorize about it objectively and dispassionately." (Mary B Hesse, "Revolutions and Reconstructions in the Philosophy of Science", 1980)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"Discoveries are not generally made in the order of their scientific arrangement: their connexions and relations are made out gradually; and it is only when the fermentation of invUltimately, discovery and invention are both problems of classification, and classification is fundamentally a problem of finding sameness. When we classify, we seek to group things that have a common structure or exhibit a common behavior." (Grady Booch, "Object-oriented design: With Applications", 1991)

"As a result, surprisingly enough, scientific advance rarely comes solely through the accumulation of new facts. It comes most often through the construction of new theoretical frameworks. [..] To understand scientific development, it is not enough merely to chronicle new discoveries and inventions. We must also trace the succession of worldviews" (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Metaphors can have profound significance because, as images or figures, they allow the mind to grasp or discover unsuspected ideal and material relationships between objects." (Giuseppe Del Re, "Cosmic Dance", 1999)

"Alternative models are neither right nor wrong, just more or less useful in allowing us to operate in the world and discover more and better options for solving problems." (Andrew Weil," The Natural Mind: A Revolutionary Approach to the Drug Problem", 2004)

"We tackle a multifaceted universe one face at a time, tailoring our models and equations to fit the facts at hand. Whatever mechanical conception proves appropriate, that is the one to use. Discovering worlds within worlds, a practical observer will deal with each realm on its own terms. It is the only sensible approach to take." (Michael Munowitz, "Knowing: The Nature of Physical Law", 2005)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"The urge to discover, to invent, to know the unknown, seems so deeply human that we cannot imagine our history without it." (Alan Lightman, "The Discoveries: Great Breakthroughs in 20th-Century Science, Including the Original Papers", 2009)

"Metaphor lives a secret life all around us. We utter about six metaphors a minute. Metaphorical thinking is essential to how we understand ourselves and others, how we communicate and learn, discover and invent." (James Geary, "I Is an Other: The Secret Life of Metaphor and How it Shapes the Way We See the World", 2011)

"Science would be better understood if we called theories ‘misconceptions’ from the outset, instead of only after we have discovered their successors." (David Deutsch, "Beginning of Infinity", 2011)

"Models do not only describe reality, they are also instruments for exploring reality. They are not only involved in the integration of known data, but also in the discovery of new data." (Andreas Bartels, "The Standard Model of Cosmology as a Tool for Interpretation and Discovery", 2013)

"Stories are how we think. They are how we make meaning of life. Call them schemas, scripts, mental maps, ideas, metaphors, or narratives. Stories are how we inspire and motivate human beings. Great stories help us to understand our place in the world, create our identity, discover our purpose, form our character and define and teach human values." (Jeroninio Almeida, "Karma Kurry for the Mind, Body, Heart & Soul", 2013)

Related Posts Plugin for WordPress, Blogger...