"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)
"The atomic theory plays a part in physics similar to that of certain auxiliary concepts in mathematics: it is a mathematical model for facilitating the mental reproduction of facts." (Ernst Mach, "The Science of Mechanics" 5th Ed, 1942)
"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming." (George Dantzig, "Linear Programming and Extensions", 1959)
"In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics." (Marshall Stone, cca 1960)
"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple." (John von Neumann, "Method in the physical sciences", 1961)
"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"The most valuable use of such [mathematical] models usually lies less in turning out the answer in an uncertain world than in shedding light on how much difference an alteration in the assumptions and/or variables used would make in the answer yielded by the models." (Edward G. Bennion, "New Decision-Making Tools for Managers", 1963)
"The use of [a] model or any of the mathematical techniques of the operations researcher does not imply management by computer." (James C Hetrick, "New Decision-Making Tools for Managers", 1963)
"Mathematical models are more precise and less ambiguous than quantitative models and are therefore of greater value in obtaining specific answers to certain managerial questions." (Henry L Tosi & Stephen J Carrol, "Management", 1976)
"A mathematical model is any complete and consistent set of mathematical equations which are designed to correspond to some other entity, its prototype. The prototype may be a physical, biological, social, psychological or conceptual entity, perhaps even another mathematical model." (Rutherford Aris, "Mathematical Modelling", 1978)
"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)
"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)
"All the [...] computer models and fancy forms will quickly lose their appeal (if they had any to begin with) unless top management pays a lot of attention to the results they generate." (Bernard C Reimann, "The Planning Forum", 1987)
"Symmetries abound in nature, in technology, and - especially - in the simplified mathematical models we study so assiduously. Symmetries complicate things and simplify them. They complicate them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They simplify them by introducing exceptional types of behavior, increasing the number of variables involved, and making vanish things that usually do not vanish. They violate all the hypotheses of our favorite theorems, yet lead to natural generalizations of those theorems. It is now standard to study the 'generic' behavior of dynamical systems. Symmetry is not generic. The answer is to work within the world of symmetric systems and to examine a suitably restricted idea of genericity." (Ian Stewart, "Bifurcation with symmetry", 1988)
"The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen Hawking, "A Brief History of Time", 1988)
"Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors." (John L Casti, "Reality Rules, The Fundamentals", 1992)
"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)
"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry", 1992)
"Mathematical models are continually invoking ideas of infinitely smooth surfaces, weightless strings, weightless beams, perfectly spherical balls, projectiles flying through airless space, gases which are perfectly compressible and liquids which are perfectly incompressible, and so on. The purpose of such simplifications is, in theory, to understand the world better despite the oversimplification, which you hope either will not matter or will be corrected when you construct a second (better) model." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)
"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)
"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)
"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)
"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)
"What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes." (John A Adam, "Mathematics in Nature", 2003)
"Mathematical modeling is as much ‘art’ as ‘science’: it requires the practitioner to (i) identify a so-called ‘real world’ problem (whatever the context may be); (ii) formulate it in mathematical terms (the ‘word problem’ so beloved of undergraduates); (iii) solve the problem thus formulated (if possible; perhaps approximate solutions will suffice, especially if the complete problem is intractable); and (iv) interpret the solution in the context of the original problem." (John A Adam, "Mathematics in Nature", 2003)
"An important aspect of the global theory of dynamical systems is the stability of the orbit structure as a whole. The motivation for the corresponding theory comes from applied mathematics. Mathematical models always contain simplifying assumptions. Dominant features are modeled; supposed small disturbing forces are ignored. Thus, it is natural to ask if the qualitative structure of the set of solutions - the phase portrait - of a model would remain the same if small perturbations were included in the model. The corresponding mathematical theory is called structural stability." (Carmen Chicone
, "Stability Theory of Ordinary Differential Equations" [Mathematics of Complexity and Dynamical Systems, 2012])
"Models do not and need not match reality in all of its aspects and details to be adequate. A mathematical model is usually developed for a specific class of target systems, and its validity is determined relative to its intended applications. A model is considered valid within
its intended domain of applicability provided that its predictions in that domain fall within an acceptable range of error, specified prior to the model’s development or identification." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])
"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])
"Mathematical modeling is the application of mathematics to describe real-world problems and investigating important questions that arise from it." (Sandip Banerjee, "Mathematical Modeling: Models, Analysis and Applications", 2014)
"A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, "Calculus: Early Transcedentals" 8th Ed., 2016)
"Different models serve different purposes. Setting up a model involves focusing on features of the phenomenon that are compatible with the methodology being proposed, and neglecting features that are not compatible with it. A mathematical model in applied science explicitly refrains from attempting to be a complete picture of the phenomenon being modeled." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)
"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, "Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)
No comments:
Post a Comment