30 June 2025

🏷️Knowledge Representation: On Idealization (Quotes)

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our ideas and prevent our attention from wandering owing to the difficulty of keeping a long chain of syllogisms in our minds, it is excusable if we are apt to forget that we are not in reality reasoning about the objects in the figure, but about objects which ore their idealizations, and of which the objects in the figure are only an imperfect representation. Even if we only visualize, we see the images of more or less gross physical objects, in which various qualities irrelevant for our specific purpose are not entirely absent, and which are at best only approximate images of those objects about which we are reasoning." (Ernest W Hobson, "Squaring the Circle", 1913)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Through modeling, scientists manipulate symbols with meanings to represent an environment with structure. Such manipulations take place to fulfill a human need, solve a problem, or create a product. When constructing a model, one works in the cognitive space of ideas. Models are used to encapsulate, highlight, replicate or represent patterns of events and the structures of things. Of course, no model provides an exact duplication of the subject matter being modeled. Details are hidden, features are skewed, and certain properties are emphasized. Models are abstract and idealized. As an abstraction, a model omits some features of the subject matter, while retaining only significant properties. As an idealization, a model depicts a subject's properties in a more perfect form." (Daniel Rothbart [Ed.], "Modeling: Gateway to the Unknown", 2004)

"The intent of these representations is to capture the relevant characteristics of reality, which may overlap but are not identical in each case. The engineer has to ascertain what those are, and then incorporate appropriate assumptions and simplifications accordingly. Two common strategies are abstraction, which involves neglecting certain aspects of reality in order to gain a better understanding of the remaining aspects; and idealization, which involves replacing a complicated and/or complex aspect of reality with a simplified version." (Jon A Schmidt, "Representation and Reality", Structure [magazine], 2015)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

🦋Science: On Trial and Error (Quotes)

"The one lesson that comes out of all our theorizing and experimenting is that there is only one really scientific progressive method; and that is the method of trial and error." (George B Shaw, "The Doctor's Dilemma: Preface on Doctors", 1909)

"There are many men now living who were in the habit of using the age-old expression: 'It is as impossible as flying.' The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Dissent, New State Ice Co. v. Liebmann, 285 U.S. 262", 1932)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"But I believe that there is no philosophical high-road in science, with epistemological signposts. No, we are in a jungle and find our way by trial and error, building our road behind us as we proceed. We do not find signposts at cross-roads, but our own scouts erect them, to help the rest." (Max Born, "Experiment and Theory in Physics", 1943)

"The method of learning by trial and error - of learning from our mistakes - seems to be fundamentally the same whether it is practised by lower or by higher animals, by chimpanzees or by men of science." (Karl Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"The difference between the amoeba and Einstein is that, although both make use of the method of trial and error elimination, the amoeba dislikes erring while Einstein is intrigued by it [...]" (Karl R Popper, "Objective Knowledge: An Evolutionary Approach", 1972) 

"Science progresses by trial and error, by conjectures and refutations. Only the fittest theories survive." (Alan Chalmers, "What Is This Thing Called Science?", 1976)

"The great revolutions in science are almost always the result of unexpected intuitive leaps. After all, what is science if not the posing of difficult puzzles by the universe? Mother Nature does something interesting, and challenges the scientist to figure out how she does it. In many cases the solution is not found by exhaustive trial and error […] or even by a deduction based on the relevant knowledge." (Martin Gardner, "Aha! Insight", 1978)

"I believe people can solve complex problems eventually. By repeated trial and error they will get there; but they need a long time. At this point I agree with Herbert Simon. People do not learn immediately, as those rational expectations models seem to imply. I don't believe that. The statement that assumptions do not matter is nonsense. It is funny. Yes, I assume people are consistent in their behavior. I assume that not because I believe everybody actually is, but because I believe, on the average, you do not get too far from it." (Franco Modigliani, "Conversations with Economists", 1983)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (R Buckminster Fuller, "Intuition", 1983)

"Growth is a process of experimentation, a series of trials, errors, and occasional victories. The failed experiments are as much as part of the process as the experiments that work." (Chérie Carter-Scott, "If Life Is a Game, These Are the Rules", 1998)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "All Life is Problem Solving", 1999)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

❄️Systems Thinking: On Idealization (Quotes)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"[…] if a system is sufficiently complicated, the time it takes to return near a state already visited is huge (think of the hundred fleas on the checkerboard). Therefore if you look at the system for a moderate amount of time, eternal return is irrelevant, and you had better choose another idealization." (David Ruelle, "Chance and Chaos", 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Cellular automata (CA) are idealizations of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states." (Andreas Schadschneider et al, "Vehicular Traffic II: The Nagel–Schreckenberg Model", 2011)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

Related Posts Plugin for WordPress, Blogger...