18 January 2023

🦋Science: On Statistical Models (Quotes)

"The most widely used mathematical tools in the social sciences are statistical, and the prevalence of statistical methods has given rise to theories so abstract and so hugely complicated that they seem a discipline in themselves, divorced from the world outside learned journals. Statistical theories usually assume that the behavior of large numbers of people is a smooth, average 'summing-up' of behavior over a long period of time. It is difficult for them to take into account the sudden, critical points of important qualitative change. The statistical approach leads to models that emphasize the quantitative conditions needed for equilibrium - a balance of wages and prices, say, or of imports and exports. These models are ill suited to describe qualitative change and social discontinuity, and it is here that catastrophe theory may be especially helpful." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Statistical models for data are never true. The question whether a model is true is irrelevant. A more appropriate question is whether we obtain the correct scientific conclusion if we pretend that the process under study behaves according to a particular statistical model." (Scott Zeger, "Statistical reasoning in epidemiology", American Journal of Epidemiology, 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Building statistical models is just like this. You take a real situation with real data, messy as this is, and build a model that works to explain the behavior of real data." (Martha Stocking, New York Times, 2000)

"The role of graphs in probabilistic and statistical modeling is threefold: (1) to provide convenient means of expressing substantive assumptions; (2) to facilitate economical representation of joint probability functions; and (3) to facilitate efficient inferences from observations." (Judea Pearl, "Causality: Models, Reasoning, and Inference", 2000)

"It is impossible to construct a model that provides an entirely accurate picture of network behavior. Statistical models are almost always based on idealized assumptions, such as independent and identically distributed (i.i.d.) interarrival times, and it is often difficult to capture features such as machine breakdowns, disconnected links, scheduled repairs, or uncertainty in processing rates." (Sean Meyn, "Control Techniques for Complex Networks", 2008)

"Statistical cognition is concerned with obtaining cognitive evidence about various statistical techniques and ways to present data. It’s certainly important to choose an appropriate statistical model, use the correct formulas, and carry out accurate calculations. It’s also important, however, to focus on understanding, and to consider statistics as communication between researchers and readers." (Geoff Cumming, "Understanding the New Statistics", 2012)

"In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a point well made by George Box in his oft-cited remark that "all models are wrong, but some are useful". (David Hand, "Wonderful examples, but let's not close our eyes", Statistical Science 29, 2014)

"A statistical model is a relatively simple approximation to account for complex phenomena that generate data. A statistical model consists of one or more equations involving both random variables and parameters. The random variables have stated or assumed distributions. The parameters are unknown fixed quantities. The random components of statistical models account for the inherent variability in most observed phenomena." (Richard M Heiberger & Burt Holland, "Statistics Concepts", 2015)

"An oft-repeated rule of thumb in any sort of statistical model fitting is 'you can't fit a model with more parameters than data points'. This idea appears to be as wide-spread as it is incorrect. On the contrary, if you construct your models carefully, you can fit models with more parameters than datapoints [...]. A model with more parameters than datapoints is known as an under-determined system, and it's a common misperception that such a model cannot be solved in any circumstance. [...] this misconception, which I like to call the 'model complexity myth' [...] is not true in general, it is true in the specific case of simple linear models, which perhaps explains why the myth is so pervasive." (Jake Vanderplas, "The Model Complexity Myth", 2015) [source]

"Machine learning takes many different forms and goes by many different names: pattern recognition, statistical modeling, data mining, knowledge discovery, predictive analytics, data science, adaptive systems, self-organizing systems, and more. Each of these is used by different communities and has different associations. Some have a long half-life, some less so." (Pedro Domingos, "The Master Algorithm", 2015)

"In machine learning, knowledge is often in the form of statistical models, because most knowledge is statistical [...] Machine learning is a kind of knowledge pump: we can use it to extract a lot of knowledge from data, but first we have to prime the pump." (Pedro Domingos, "The Master Algorithm", 2015)

"One final warning about the use of statistical models (whether linear or otherwise): The estimated model describes the structure of the data that have been observed. It is unwise to extend this model very far beyond the observed data." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The central limit conjecture states that most errors are the result of many small errors and, as such, have a normal distribution. The assumption of a normal distribution for error has many advantages and has often been made in applications of statistical models." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"When we use algebraic notation in statistical models, the problem becomes more complicated because we cannot 'observe' a probability and know its exact number. We can only estimate probabilities on the basis of observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Any fool can fit a statistical model, given the data and some software. The real challenge is to decide whether it actually fits the data adequately. It might be the best that can be obtained, but still not good enough to use." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...