"As a metaphor - and I stress that it is intended as a metaphor - the concept of an invariant that arises out of mutually or cyclically balancing changes may help us to approach the concept of self. In cybernetics this metaphor is implemented in the ‘closed loop’, the circular arrangement of feedback mechanisms that maintain a given value within certain limits. They work toward an invariant, but the invariant is achieved not by a steady resistance, the way a rock stands unmoved in the wind, but by compensation over time. Whenever we happen to look in a feedback loop, we find the present act pitted against the immediate past, but already on the way to being compensated itself by the immediate future. The invariant the system achieves can, therefore, never be found or frozen in a single element because, by its very nature, it consists in one or more relationships - and relationships are not in things but between them." (Ernst von Glasersfeld German, "Cybernetics, Experience and the Concept of Self", 1970)
"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)
"Neural computing is the study of cellular networks that have a natural property for storing experimental knowledge. Such systems bear a resemblance to the brain in the sense that knowledge is acquired through training rather than programming and is retained due to changes in node functions. The knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such nets is to recall these states or cycles in response to the presentation of cues." (Igor Aleksander & Helen Morton, "Neural computing architectures: the design of brain-like machines", 1989)
"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations."
"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)
"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)
"A major clash between economics and ecology derives from the fact that nature is cyclical, whereas our industrial systems are linear. Our businesses take resources, transform them into products plus waste, and sell the products to consumers, who discard more waste […]" (Fritjof Capra, "The Web of Life", 1996)
"Self-organization is seen as the process by which systems of many components tend to reach a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no external interference." (Luis M Rocha, "Syntactic Autonomy", Proceedings of the Joint Conference on the Science and Technology of Intelligent Systems, 1998)
"All living organisms must feed on continual flows of matter and energy: from their environment to stay alive, and all living organisms continually produce waste. However, an ecosystem generates no net waste, one species' waste being another species' food. Thus, matter cycles continually through the web of life." (Fritjof Capra, "The Hidden Connections", 2002)
"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005)
"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)
"[…] chaos and fractals are part of an even grander subject known as dynamics. This is the subject that deals with change, with systems that evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that we use to analyze the behavior."
No comments:
Post a Comment