12 August 2021

Systems Thinking: On Simplicity (Quotes)

"Men are often led into errors by the love of simplicity, which disposes us to reduce things to few principles, and to conceive a greater simplicity in nature than there really is." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"Cultivate simplicity or rather should I say banish elaborateness, for simplicity springs spontaneous from the heart." (Charles Lamb, [Letter to Coleridge] 1790)

"Nature does nothing in vain when less will serve; for Nature is pleased with simplicity and affects not the pomp of superfluous causes." (Sir Isaac Newton, "The Mathematical Principles of Natural Philosophy", Voll. II, 1803)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"Simplicity and precision ought to be the characteristics of a scientific nomenclature: words should signify things, or the analogies of things, and not opinions." (Sir Humphry Davy, Elements of Chemical Philosophy", 1812)

"Discoveries are not generally made in the order of their scientific arrangement: their connexions and relations are made out gradually; and it is only when the fermentation of invention has subsided that the whole clears into simplicity and order. " (William Whewell, "An Elementary Treatise on Mechanics" Vol. I, 1819)

"In the original discovery of a proposition of practical utility, by deduction from general principles and from experimental data, a complex algebraical investigation is often not merely useful, but indispensable; but in expounding such a proposition as a part of practical science, and applying it to practical purposes, simplicity is of the importance: - and […] the more thoroughly a scientific man has studied higher mathematics, the more fully does he become aware of this truth – and […] the better qualified does he become to free the exposition and application of principles from mathematical intricacy." (William J M Rankine, "On the Harmony of Theory and Practice in Mechanics", 1856)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctively rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)

"[...] the simplicity of nature which we at present grasp is really the result of infinite complexity; and that below the uniformity there underlies a diversity whose depths we have not yet probed, and whose secret places are still beyond our reach." (William Spottiswoode, [Report of the Forty-eighth Meeting of the British Association for the, Advancement of Science] 1878)

"The aim of science is always to reduce complexity to simplicity." (William James, "The Principles of Psychology", 1890)

"[…] we cannot a priori demand from nature simplicity, nor can we judge what in her opinion is simple." (Heinrich Hertz, "The Principles of Mechanics Presented in a New Form", 1894)

"[…] it is an error to believe that rigor in the proof is the enemy of simplicity." (David Hilbert, [Paris International Congress] 1900)

"If we study the history of science we see happen two inverse phenomena […] Sometimes simplicity hides under complex appearances; sometimes it is the simplicity which is apparent, and which disguises extremely complicated realities. […] No doubt, if our means of investigation should become more and more penetrating, we should discover the simple under the complex, then the complex under the simple, then again the simple under the complex, and so on, without our being able to foresee what will be the last term. We must stop somewhere, and that science may be possible, we must stop when we have found simplicity. This is the only ground on which we can rear the edifice of our generalizations." (Henri Poincaré, "Science and Hypothesis", 1901)

"Let us notice first of all, that every generalization implies in some measure the belief in the unity and simplicity of nature." (Jules H Poincaré, "Science and Hypothesis", 1905)

"The aim of science is not things themselves, as the dogmatists in their simplicity imagine, but the relation between things.  (Henri Poincaré, "Science and Hypothesis", 1905)

"Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of  mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought." (Jules Henri Poincaré, "The Future of Mathematics", Monist Vol. 20, 1910)

"The facts of greatest outcome are those we think simple; may be they really are so, because they are influenced only by a small number of well-defined circumstances, may be they take on an appearance of simplicity because the various circumstances upon which they depend obey the laws of chance and so come to mutually compensate." (Henri Poincaré, "The Foundations of Science", 1913)

"But it is just this characteristic of simplicity in the laws of nature hitherto discovered which it would be fallacious to generalize, for it is obvious that simplicity has been a part cause of their discovery, and can, therefore, give no ground for the supposition that other undiscovered laws are equally simple." (Bertrand Russell, "'On the Scientific Method in Philosophy", 1918)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919)

"In scientific thought we adopt the simplest theory which will explain all the facts under consideration and enable us to predict facts of the same kind. The catch in this criterion lies in the world 'simplest'." (John B S Haldane, "Possible Worlds and Other Essays", 1928)

"The researcher worker, in his efforts to express the fundamental laws of Nature in mathematical form, should strive mainly for mathematical beauty. He should still take simplicity into consideration in a subordinate way to beauty. […] It often happens that the requirements of simplicity and beauty are the same, but where they clash the latter must take precedence." (Paul A M Dirac, "The Relation Between Mathematics and Physics", Proceedings of the Royal Society , Volume LIX, 1939)

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression which classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown (for the special attention of those who are skeptics on principle)." (Albert Einstein, "Autobiographical Notes", 1949)

"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"Nature is pleased with simplicity, and affects not the pomp of superfluous causes." (Morris Kline, "Mathematics and the Physical World", 1959)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"For if as scientists we seek simplicity, then obviously we try the simplest surviving theory first, and retreat from it only when it proves false. Not this course, but any other, requires explanation. If you want to go somewhere quickly, and several alternate routes are equally likely to be open, no one asks why you take the shortest. The simplest theory is to be chosen not because it is the most likely to be true but because it is scientifically the most rewarding among equally likely alternatives. We aim at simplicity and hope for truth." (Nelson Goodman, "Problems and Projects", 1972)

"The beauty of physics lies in the extent which seemingly complex and unrelated phenomena can be explained and correlated through a high level of abstraction by a set of laws which are amazing in their simplicity." (Melvin Schwartz, "In Principles of Electrodynamics", 1972)

"The systems view is the emerging contemporary view of organized complexity, one step beyond the Newtonian view of organized simplicity, and two steps beyond the classical world views of divinely ordered or imaginatively envisaged complexity."  (Ervin László, "Introduction to Systems Philosophy", 1972)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"Science attempts to find logic and simplicity in nature. Mathematics attempts to establish order and simplicity in human thought." (Edward Teller, "The Pursuit of Simplicity", 1980)

"Simplicity does not precede complexity, but follows it." (Alan Perlis, "Epigrams on Programming", 1982)

"It is often the scientist’s experience that he senses the nearness of truth when such connections are envisioned. A connection is a step toward simplification, unification. Simplicity is indeed often the sign of truth and a criterion of beauty." (Mahlon B Hoagland, "Toward the Habit of Truth", 1990)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity."  (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"It is not merely the truth of science that makes it beautiful, but its simplicity." (Walker Percy, "Signposts in a Strange Land", 1991)

"Scientists try to make things simple. That is in good part why we are stuck with bivalence. Scientists' first instinct is to fit a linear model to a nonlinear world. This creates another mismatch problem, the math modeler's dilemma: linear math, nonlinear world." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"The amount of understanding produced by a theory is determined by how well it meets the criteria of adequacy - testability, fruitfulness, scope, simplicity, conservatism - because these criteria indicate the extent to which a theory systematizes and unifies our knowledge." (Theodore Schick Jr.,  "How to Think about Weird Things: Critical Thinking for a New Age", 1995)

"[…] the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth." (Richard Swinburne, "Simplicity as Evidence for Truth", 1997)

"I seek […] to show that - other things being equal - the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth." (Richard Swinburne, "Simplicity as Evidence for Truth", 1997)

"[…] some systems (system is just a jargon for anything, like the swinging pendulum or the Solar System, or water dripping from a tap)  are very sensitive to their starting conditions, so that a tiny difference in the initial ‘push’ you give them causes a big difference in where they end up, and there is feedback, so that what a system does affects its own behavior."(John Gribbin, "Deep Simplicity", 2004)

"The immediate evidence from the natural world may seem to be chaotic and without any inner regularity, but mathematics reveals that under the surface the world of nature has an unexpected simplicity - an extraordinary beauty and order." (William Byers, "How Mathematicians Think", 2007)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, "God: The Failed Hypothesis", 2010)

"Complexity is the prodigy of the world. Simplicity is the sensation of the universe. Behind complexity, there is always simplicity to be revealed. Inside simplicity, there is always complexity to be discovered." (Gang Yu, "in Data Warehousing in the Age of Big Data", 2013)

"Decentralized systems are the quintessential patrons of simplicity. They allow complexity to rise to a level at which it is sustainable, and no higher." (Lawrence K. Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"I think there is a profound and enduring beauty in simplicity; in clarity, in efficiency. True simplicity is derived from so much more than just the absence of clutter and ornamentation. It's about bringing order to complexity." (Jonathan Ive, 2013)

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"It is the last lesson of modern science that the highest simplicity of structure is produced, not by few elements, but by the highest complexity." (Ralph W Emerson)

"It would be simple enough, if only simplicity were not the most difficult of all things." (Carl G Jung)

"It would seem that more than function itself, simplicity is the deciding factor in the aesthetic equation. One might call the process beauty through function and simplification." (Raymond Loewy)

"The art of simplicity is a puzzle of complexity." (Douglas Horton)

"The beauty in the laws of physics is the fantastic simplicity that they have." (John A Wheeler)

"The beauty of simplicity is the complexity it attracts." (Tom Robbins)

"The equations that really work in describing nature with the most generality and the greatest simplicity are very elegant and subtle." (Edward Witten)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...