"Despite the disorder observed in Nature, one finds enough traces of the wisdom and power of its Author that one cannot fail to recognize Him." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746)
"Chaos is but unperceived order; it is a word indicating the limitations of the human mind and the paucity of observational facts. The words ‘chaos’, ‘accidental’, ‘chance’, ‘unpredictable’ are conveniences behind which we hide our ignorance.” (Harlow Shapley, "Of Stars and Men", 1958)
"One of mankind’s earliest intellectual endeavors was the attempt to gather together the seemingly overwhelming variety presented by nature into an orderly pattern. The desire to classify - to impose order on chaos and then to form patterns out of this order on which to base ideas and conclusions - remains one of our strongest urges." (Roger L Batten, 1959)
"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)
"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)
"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning), it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability; they take up some part of space and last for some period of time. Moreover, although a given object can exist in many different guises, we never fail to recognize it [...]" (René Thom, "Structural Stability and Morphogenesis", 1972)
"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos", 1987)
"The flapping of a single butterfly’s wing today produces a tiny change in the state of the atmosphere. Over a period of time, what the atmosphere actually does diverges from what it would have done." (Ian Stewart, "Does God Play Dice?", 1989)
"Never in the annals of science and engineering has there been a phenomenon so ubiquitous‚ a paradigm so universal‚ or a discipline so multidisciplinary as that of chaos. Yet chaos represents only the tip of an awesome iceberg‚ for beneath it lies a much finer structure of immense complexity‚ a geometric labyrinth of endless convolutions‚ and a surreal landscape of enchanting beauty. The bedrock which anchors these local and global bifurcation terrains is the omnipresent nonlinearity that was once wantonly linearized by the engineers and applied scientists of yore‚ thereby forfeiting their only chance to grapple with reality." (Leon O Chua, "Editorial", International Journal of Bifurcation and Chaos, Vol. l (1), 1991)
"We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty.” (Ivars Peterson, "Newton’s Clock”, 1993)
"The voyage of discovery into our own solar system has taken us from clockwork precision into chaos and complexity. This still unfinished journey has not been easy, characterized as it is by twists, turns, and surprises that mirror the intricacies of the human mind at work on a profound puzzle. Much remains a mystery. We have found chaos, but what it means and what its relevance is to our place in the universe remains shrouded in a seemingly impenetrable cloak of mathematical uncertainty." (Ivars Peterson, "Newton’s Clock", 1993)
"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)
"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)
"There are many possible definitions of chaos. In fact, there is no general agreement within the scientific community as to what constitutes a chaotic dynamical system." (Robert L Devaney, "A First Course in Chaotic Dynamical Systems: Theory and Experiment", 1992)
"Chaos has three fundamental characteristics. They are (a) irregular periodicity, (b) sensitivity to initial conditions, and (c) a lack of predictability. These characteristics interact within any one chaotic setting to produce highly complex nonlinear variable trajectories."(Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"In its essence, chaos is an irregular oscillatory process. Because chaos is a subset of the more general classification of oscillatory dynamics, it is useful before venturing into chaos to review briefly the extent to which regular oscillatory processes influence human behavior." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"In addition to dimensionality requirements, chaos can occur only in nonlinear situations. In multidimensional settings, this means that at least one term in one equation must be nonlinear while also involving several of the variables. With all linear models, solutions can be expressed as combinations of regular and linear periodic processes, but nonlinearities in a model allow for instabilities in such periodic solutions within certain value ranges for some of the parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)
"Most of us use the word 'chaos' rather loosely to represent anything that occurs randomly, so it is natural to think that the motion described by the erratic pendulum above is completely random. Not so. The scientific definition of chaos is different from the one you may be used to in that it has an element of determinism in it. This might seem strange, as determinism and chaos are opposites of one another, but oddly enough they are also compatible." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)
"Nonlinearity is important because it can lead to chaos. That's not to say that we get chaos all the time with nonlinear equations; in practice it only occurs under certain conditions." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)
"What chaos implies is not catastrophes, but rather our inability to make long-range predictions [...]" (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)
"What is chaos? Everyone has an impression of what the word means, but scientifically chaos is more than random behavior, lack of control, or complete disorder. [...] Scientifically, chaos is defined as extreme sensitivity to initial conditions. If a system is chaotic, when you change the initial state of the system by a tiny amount you change its future significantly." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)
"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)
"An apparent paradox is that chaos is deterministic, generated by fixed rules which do not themselves involve any elements of change. We even speak of deterministic chaos. In principle, the future is completely determined by the past; but in practice small uncertainties, much like minute errors of measurement which enter into calculations, are amplified, with the effect that even though the behavior is predictable in the short term, it is unpredictable over the long term." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)
"Chaos theory, too, is occasionally in danger of being overtaxed by being associated with everything that can be even superficially related to the concept of chaos. Unfortunately, a sometimes extravagant popularization through the media is also contributing to this danger; but at the same time this popularization is also an important opportunity to free areas of mathematics from their intellectual ghetto and to show that mathematics is as alive and important as ever." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)
"Natural laws, and for that matter determinism, do not exclude the possibility of chaos. In other words, determinism and predictability are not equivalent. And what is an even more surprising rinding of recent chaos theory has been the discovery that these effects are observable in many systems which are much simpler than the weather. [...] Moreover, chaos and order (i.e., the causality principle) can be observed in juxtaposition within the same system. There may be a linear progression of errors characterizing a deterministic system which is governed by the causality principle, while (in the same system) there can also be an exponential progression of errors (i.e., the butterfly effect) indicating that the causality principle breaks down." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)
"Chaos is not pure disorder, it carries within itself the indistinctness between the potentialities of order, of disorder, and of organization from which a cosmos will be born, which is an ordered universe." (Edgar Morin, "Restricted Complexity, General Complexity" [in (Carlos Gershenson et al [Eds.], "Worldviews, Science and Us: Philosophy and Complexity", 2007)])
"Chaos has three primary features: unpredictability, boundedness, and sensitivity to initial conditions. Unpredictability means that a sequence of numbers that is generated from a chaotic function does not repeat. This principle is perhaps a matter of degree, because some of the numbers could look as though they are recurring only because they are rounded to a convenient number of decimal points. [...] Boundedness means that, for all the unpredictability of motion, all points remain within certain boundaries. The principle of sensitivity to initial conditions means that two points that start off as arbitrarily close together become exponentially farther away from each other as the iteration process proceeds. This is a clear case of small differences producing a huge effect." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)
"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini," Chaos: From Simple Models to Complex Systems", 2010)
"Entropy is the crisp scientific name for waste, chaos, and disorder. As far as we know, the sole law of physics with no known exceptions anywhere in the universe is this: All creation is headed to the basement. Everything in the universe is steadily sliding down the slope toward the supreme equality of wasted heat and maximum entropy." (Kevin Kelly, "What Technology Wants", 2010)
"Chaos provides order. Chaotic agitation and motion are needed to create overall, repetitive order. This ‘order through fluctuations’ keeps dynamic markets stable and evolutionary processes robust. In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)
"Order is not universal. In fact, many chaologists and physicists posit that universal laws are more flexible than first realized, and less rigid - operating in spurts, jumps, and leaps, instead of like clockwork. Chaos prevails over rules and systems because it has the freedom of infinite complexity over the known, unknown, and the unknowable." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)
"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)
"Chaos can be understood as a dynamical process in which microscopic information hidden in the details of a system’s state is dug out and expanded to a macroscopically visible scale (stretching), while the macroscopic information visible in the current system’s state is continuously discarded (folding)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
No comments:
Post a Comment