06 January 2021

🧬Cybernetics: On Neural Networks (Quotes)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"The terms 'black box' and 'white box' are convenient and figurative expressions of not very well determined usage. I shall understand by a black box a piece of apparatus, such as four-terminal networks with two input and two output terminals, which performs a definite operation on the present and past of the input potential, but for which we do not necessarily have any information of the structure by which this operation is performed. On the other hand, a white box will be similar network in which we have built in the relation between input and output potentials in accordance with a definite structural plan for securing a previously determined input-output relation." (Norbert Wiener, "Cybernetics: Or Control and Communication in the Animal and the Machine", 1948)

"Neural computing is the study of cellular networks that have a natural property for storing experimental knowledge. Such systems bear a resemblance to the brain in the sense that knowledge is acquired through training rather than programming and is retained due to changes in node functions. The knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such nets is to recall these states or cycles in response to the presentation of cues." (Igor Aleksander & Helen Morton, "Neural computing architectures: the design of brain-like machines", 1989)

"A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects: 1. Knowledge is acquired by the network through a learning process. 2. Interneuron connection strengths known as synaptic weights are used to store the knowledge." (Igor Aleksander & Helen Morton, "An introduction to neural computing", 1990) 

"Neural Computing is the study of networks of adaptable nodes which through a process of learning from task examples, store experiential knowledge and make it available for use." (Igor Aleksander & Helen Morton, "An introduction to neural computing", 1990)

"A neural network is characterized by (1) its pattern of connections between the neurons (called its architecture), (2) its method of determining the weights on the connections (called its training, or learning, algorithm), and (3) its activation function." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: (1) Information processing occurs at many simple elements called neurons. (2) Signals are passed between neurons over connection links. (3) Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. (4) Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The most familiar example of swarm intelligence is the human brain. Memory, perception and thought all arise out of the nett actions of billions of individual neurons. As we saw earlier, artificial neural networks (ANNs) try to mimic this idea. Signals from the outside world enter via an input layer of neurons. These pass the signal through a series of hidden layers, until the result emerges from an output layer. Each neuron modifies the signal in some simple way. It might, for instance, convert the inputs by plugging them into a polynomial, or some other simple function. Also, the network can learn by modifying the strength of the connections between neurons in different layers." (David G Green, "The Serendipity Machine: A voyage of discovery through the unexpected world of computers", 2004)

"It is not only a metaphor to transform the Internet to a superbrain with self-organizing features of learning and adapting. Information retrieval is already realized by neural networks adapting to the information preferences of a human user with synaptic plasticity. In sociobiology, we can 1 earn from populations of ants and termites how to organize traffic and information processing by swarm intelligence. From a technical point of view, we need intelligent programs distributed in the nets. There are already more or less intelligent virtual organisms {'agents'), learning, self-organizing and adapting to our individual preferences of information, to select our e-mails, to prepare economic transactions or to defend the attacks of hostile computer viruses, like the immune system of our body." (Klaus Mainzer, "Complexity Management in the Age of Globalization", 2006)

"A neural network is a particular kind of computer program, originally developed to try to mimic the way the human brain works. It is essentially a computer simulation of a complex circuit through which electric current flows." (Keith J Devlin & Gary Lorden, "The Numbers behind NUMB3RS: Solving crime with mathematics", 2007)

"A network of many simple processors ('units' or 'neurons') that imitates a biological neural network. The units are connected by unidirectional communication channels, which carry numeric data. Neural networks can be trained to find nonlinear relationships in data, and are used in various applications such as robotics, speech recognition, signal processing, medical diagnosis, or power systems." (Adnan Khashman et al, "Voltage Instability Detection Using Neural Networks", 2009)

"An artificial neural network, often just called a 'neural network' (NN), is an interconnected group of artificial neurons that uses a mathematical model or computational model for information processing based on a connectionist approach to computation. Knowledge is acquired by the network from its environment through a learning process, and interneuron connection strengths (synaptic weighs) are used to store the acquired knowledge." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", 2009)

"An artificial neural network is a massive parallel distributed processor made up of simple processing units. It has the ability to learn from experiential knowledge expressed through interunit connections strengths, and can make such knowledge available for use." (Yorgos Goletsis et al, "Bankruptcy Prediction through Artificial Intelligence", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Intelligent systems that mimic processing of information by human brain neurons. They are capable of learning attributes, generalizing, parallel processing of information and error minimization. As a result, they are capable to model and solve complex systems." (Salim Lahmiri , "Modeling Stock Market Industrial Sectors as Dynamic Systems and Forecasting", 2015)

"Just as they did thirty years ago, machine learning programs (including those with deep neural networks) operate almost entirely in an associational mode. They are driven by a stream of observations to which they attempt to fit a function, in much the same way that a statistician tries to fit a line to a collection of points. Deep neural networks have added many more layers to the complexity of the fitted function, but raw data still drives the fitting process. They continue to improve in accuracy as more data are fitted, but they do not benefit from the 'super-evolutionary speedup'."  (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"A neural-network algorithm is simply a statistical procedure for classifying inputs (such as numbers, words, pixels, or sound waves) so that these data can mapped into outputs. The process of training a neural-network model is advertised as machine learning, suggesting that neural networks function like the human mind, but neural networks estimate coefficients like other data-mining algorithms, by finding the values for which the model’s predictions are closest to the observed values, with no consideration of what is being modeled or whether the coefficients are sensible." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)

"It is a computational technique inspired by the human brain. It consists of nodes (neurons) and connections (also known as synapses) between them, to exchange and transfer data. The network learns automatically according to the flow of the data." (Shradha Verma, "Deep Learning-Based Mobile Application for Plant Disease Diagnosis", 2019)

"The label neural networks suggests that these algorithms replicate the neural networks in human brains that connect electrically excitable cells called neurons. They don’t. We have barely scratched the surface in trying to figure out how neurons receive, store, and process information, so we cannot conceivably mimic them with computers." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)

"[a neural network is] a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs." (Robert Hecht-Nielsen)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...