28 November 2020

❄️Systems Thinking: On Living Systems Theory (Quotes)

"A vital phenomenon can only be regarded as explained if it has been proven that it appears as the result of the material components of living organisms interacting according to the laws which those same components follow in their interactions outside of living systems." (Adolf E Fick, "Gesammelte Schriften" Vol. 3, 1904)

"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’." (Ludwig von Bertalanffy, “Kritische Theorie der Formbildung”, 1928)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)

"A system is primarily a living system, and the process which defines it is the maintenance of an organization which we know as life." (Ralph W Gerard, "Units and Concepts of Biology", 1958)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"The homeostatic principle does not apply literally to the functioning of all complex living systems, in that in counteracting entropy they move toward growth and expansion." (Daniel Katz, "The Social Psychology of Organizations", 1966) 

"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)

"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)

"A cognitive system is a system whose organization defines a domain of interactions in which it can act with relevance to the maintenance of itself, and the process of cognition is the actual (inductive) acting or behaving in this domain. Living systems are cognitive systems, and living as a process is a process of cognition. This statement is valid for all organisms, with and without a nervous system." (Humberto R Maturana, "Biology of Cognition", 1970)

"A living system, due to its circular organization, is an inductive system and functions always in a predictive manner: what happened once will occur again. Its organization, (genetic and otherwise) is conservative and repeats only that which works. For this same reason living systems are historical systems; the relevance of a given conduct or mode of behavior is always determined in the past." (Humberto Maturana, "Biology of Cognition", 1970)

"The functional order maintained within living systems seems to defy the Second Law; nonequilibrium thermodynamics describes how such systems come to terms with entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves - theme and variations - at each level of system. These similarities and differences are proper concerns for science. From the ceaseless streaming of protoplasm to the many-vectored activities of supranational systems, there are continuous flows through living systems as they maintain their highly organized steady states." (James G Miller, "Living Systems", 1978)

"Living systems are units of interactions; they exist in an ambience. From a purely biological point of view they cannot be understood independently of that part of the ambience with which they interact: the niche; nor can the niche be defined independently of the living system that specifies it." (Humberto Maturana, "Biology of Cognition", 1970)

"Information is carried by physical entities, such as books or sound waves or brains, but it is not itself material. Information in a living system is a feature of the order and arrangement of its parts, which arrangement provides the signs that constitute a ‘code’ or ‘language’." (John Z Young, "Programs of the Brain", 1978)

"In a biological or social system each holon must assert its individuality in order to maintain the system's stratified order, but it must also submit to the demands of the whole in order to make the system viable. These two tendencies are opposite but complementary. In a healthy system - an individual, a society, or an ecosystem - there is a balance between integration and self-assertion. This balance is not static but consists of a dynamic interplay between the two complementary tendencies, which makes the whole system flexible and open to change." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"Living systems are organized in such a way that they form multileveled structures, each level consisting of subsystems which are wholes in regard to their parts, and parts with respect to the larger wholes." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"The autonomy of living systems is characterized by closed, recursive organization. [...] A system's highest order of recursion or feedback process defines, generates, and maintains the autonomy of a system. The range of deviation this feedback seeks to control concerns the organization of the whole system itself. If the system should move beyond the limits of its own range of organization it would cease to be a system. Thus, autonomy refers to the maintenance of a systems wholeness. In biology, it becomes a definition of what maintains the variable called living." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Living systems are never in equilibrium. They are inherently unstable. They may seem stable, but they're not. Everything is moving and changing. In a sense, everything is on the edge of collapse. Michael Crichton, "Jurassic Park", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Living systems exist in the solid regime near the edge of chaos, and natural selection achieves and sustains such a poised state." (Stuart Kauffman, "The Origins of Order: Self-organization and selection in evolution", 1993) 

"It [Living Systems Theory (LST)] involves observing and measuring important relationships between inputs and outputs of the total system and identifying the structures that perform each of the sub‐system processes. […] The flows of relevant matter, energy, and information through the system and the adjustment processes of subsystems and the total system are also examined. The status and function of the system are analyzed and compared with what is average or normal for that type of system. If the system is experiencing a disturbance in some steady state, an effort is made to discover the source of the strain and correct it." (James G Miller & Jessie L Miller, "Applications of living systems theory", Systemic Practice and Action Research 8, 1995)

"According to the systems view, the essential properties of an organism, or living system, are properties of the whole, which none of the parts have. They arise from the interactions and relationships among the parts. These properties are destroyed when the system is dissected, either physically or theoretically, into isolated elements. Although we can discern individual parts in any system, these parts are not isolated, and the nature of the whole is always different from the mere sum of its parts." (Fritjof Capra, "The Web of Life", 1996)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"When defining living systems, the term dynamic equilibrium is essential. It does not imply something which is steady or stable. On the contrary, it is a floating state characterized by invisible movements and preparedness for change. To be in dynamic equilibrium is adapting adjustment to balance. Homeostasis stands for the sum of all control functions creating the state of dynamic equilibrium in a healthy organism. It is the ability of the body to maintain a narrow range of internal conditions in spite of environmental changes." (Lars Skyttner, "General Systems Theory: Problems, Perspective, Practice", 2005)

"The universe of all things that exist may be understood as a universe of systems where a system is defined as any set of related and interacting elements. This concept is primitive and powerful and has been used increasingly over the last half-century to organize knowledge in virtually all domains of interest to investigators. As human inventions and social interactions grow more complex, general conceptual frameworks that integrate knowledge among different disciplines studying those emerging systems grow more important. Living systems theory (LST) instructs integrative research among biological and social sciences and related academic disciplines." (G A Swanson & James G Miller, "Living Systems Theory", 2013)

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Deep ecology does not separate humans - or anything else-from the natural environment. It sees the world not as a collection of isolated objects, but as a network of phenomena that are fundamentally interconnected and interdependent. Deep ecology recognizes the intrinsic value of all living beings and views humans as just one particular strand in the web of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as "emergence," is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...