28 November 2020

❄️Systems Thinking: On Living Systems Theory (Quotes)

"A vital phenomenon can only be regarded as explained if it has been proven that it appears as the result of the material components of living organisms interacting according to the laws which those same components follow in their interactions outside of living systems." (Adolf E Fick, "Gesammelte Schriften" Vol. 3, 1904)

"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’." (Ludwig von Bertalanffy, “Kritische Theorie der Formbildung”, 1928)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)

"A system is primarily a living system, and the process which defines it is the maintenance of an organization which we know as life." (Ralph W Gerard, "Units and Concepts of Biology", 1958)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"The homeostatic principle does not apply literally to the functioning of all complex living systems, in that in counteracting entropy they move toward growth and expansion." (Daniel Katz, "The Social Psychology of Organizations", 1966) 

"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)

"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)

"A cognitive system is a system whose organization defines a domain of interactions in which it can act with relevance to the maintenance of itself, and the process of cognition is the actual (inductive) acting or behaving in this domain. Living systems are cognitive systems, and living as a process is a process of cognition. This statement is valid for all organisms, with and without a nervous system." (Humberto R Maturana, "Biology of Cognition", 1970)

"A living system, due to its circular organization, is an inductive system and functions always in a predictive manner: what happened once will occur again. Its organization, (genetic and otherwise) is conservative and repeats only that which works. For this same reason living systems are historical systems; the relevance of a given conduct or mode of behavior is always determined in the past." (Humberto Maturana, "Biology of Cognition", 1970)

"The functional order maintained within living systems seems to defy the Second Law; nonequilibrium thermodynamics describes how such systems come to terms with entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves - theme and variations - at each level of system. These similarities and differences are proper concerns for science. From the ceaseless streaming of protoplasm to the many-vectored activities of supranational systems, there are continuous flows through living systems as they maintain their highly organized steady states." (James G Miller, "Living Systems", 1978)

"Living systems are units of interactions; they exist in an ambience. From a purely biological point of view they cannot be understood independently of that part of the ambience with which they interact: the niche; nor can the niche be defined independently of the living system that specifies it." (Humberto Maturana, "Biology of Cognition", 1970)

"Information is carried by physical entities, such as books or sound waves or brains, but it is not itself material. Information in a living system is a feature of the order and arrangement of its parts, which arrangement provides the signs that constitute a ‘code’ or ‘language’." (John Z Young, "Programs of the Brain", 1978)

"In a biological or social system each holon must assert its individuality in order to maintain the system's stratified order, but it must also submit to the demands of the whole in order to make the system viable. These two tendencies are opposite but complementary. In a healthy system - an individual, a society, or an ecosystem - there is a balance between integration and self-assertion. This balance is not static but consists of a dynamic interplay between the two complementary tendencies, which makes the whole system flexible and open to change." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"Living systems are organized in such a way that they form multileveled structures, each level consisting of subsystems which are wholes in regard to their parts, and parts with respect to the larger wholes." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"The autonomy of living systems is characterized by closed, recursive organization. [...] A system's highest order of recursion or feedback process defines, generates, and maintains the autonomy of a system. The range of deviation this feedback seeks to control concerns the organization of the whole system itself. If the system should move beyond the limits of its own range of organization it would cease to be a system. Thus, autonomy refers to the maintenance of a systems wholeness. In biology, it becomes a definition of what maintains the variable called living." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Living systems are never in equilibrium. They are inherently unstable. They may seem stable, but they're not. Everything is moving and changing. In a sense, everything is on the edge of collapse. Michael Crichton, "Jurassic Park", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Living systems exist in the solid regime near the edge of chaos, and natural selection achieves and sustains such a poised state." (Stuart Kauffman, "The Origins of Order: Self-organization and selection in evolution", 1993) 

"It [Living Systems Theory (LST)] involves observing and measuring important relationships between inputs and outputs of the total system and identifying the structures that perform each of the sub‐system processes. […] The flows of relevant matter, energy, and information through the system and the adjustment processes of subsystems and the total system are also examined. The status and function of the system are analyzed and compared with what is average or normal for that type of system. If the system is experiencing a disturbance in some steady state, an effort is made to discover the source of the strain and correct it." (James G Miller & Jessie L Miller, "Applications of living systems theory", Systemic Practice and Action Research 8, 1995)

"According to the systems view, the essential properties of an organism, or living system, are properties of the whole, which none of the parts have. They arise from the interactions and relationships among the parts. These properties are destroyed when the system is dissected, either physically or theoretically, into isolated elements. Although we can discern individual parts in any system, these parts are not isolated, and the nature of the whole is always different from the mere sum of its parts." (Fritjof Capra, "The Web of Life", 1996)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"When defining living systems, the term dynamic equilibrium is essential. It does not imply something which is steady or stable. On the contrary, it is a floating state characterized by invisible movements and preparedness for change. To be in dynamic equilibrium is adapting adjustment to balance. Homeostasis stands for the sum of all control functions creating the state of dynamic equilibrium in a healthy organism. It is the ability of the body to maintain a narrow range of internal conditions in spite of environmental changes." (Lars Skyttner, "General Systems Theory: Problems, Perspective, Practice", 2005)

"The universe of all things that exist may be understood as a universe of systems where a system is defined as any set of related and interacting elements. This concept is primitive and powerful and has been used increasingly over the last half-century to organize knowledge in virtually all domains of interest to investigators. As human inventions and social interactions grow more complex, general conceptual frameworks that integrate knowledge among different disciplines studying those emerging systems grow more important. Living systems theory (LST) instructs integrative research among biological and social sciences and related academic disciplines." (G A Swanson & James G Miller, "Living Systems Theory", 2013)

"All living systems are networks of smaller components, and the web of life as a whole is a multilayered structure of living systems nesting within other living systems - networks within networks." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Deep ecology does not separate humans - or anything else-from the natural environment. It sees the world not as a collection of isolated objects, but as a network of phenomena that are fundamentally interconnected and interdependent. Deep ecology recognizes the intrinsic value of all living beings and views humans as just one particular strand in the web of life." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as "emergence," is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

❄️Systems Thinking: On General Systems Theory (Quotes)

"A second possible approach to general systems theory is through the arrangement of theoretical systems and constructs in a hierarchy of complexity, roughly corresponding to the complexity of the ‘individuals’ of the various empirical fields […] leading towards a ‘system of systems’." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", 1956) 

"General Systems Theory is a name which has come into use to describe a level of theoretical model-building which lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the specialized disciplines. Mathematics attempts to organize highly general relationships into a coherent system, a system however which does not have any necessary connections with the 'real' world around us. It studies all thinkable relationships abstracted from any concrete situation or body of empirical knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)

"General Systems Theory is the skeleton of science in the sense that it aims to provide a framework or structure of systems on which to hang the flesh and blood of particular disciplines and particular subject matters in an orderly and coherent corpus of knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"Two possible approaches to the organization of general systems theory suggest themselves, which are to be thought of as complementary rather than competitive, or at least as two roads each of which is worth exploring. The first approach is to look over the empirical universe and to pick out certain general phenomena which are found in many different disciplines, and to seek to build up general theoretical models relevant to these phenomena. The second approach is to arrange the empirical fields in a hierarchy of complexity of organization of their basic 'individual' or unit of behavior, and to try to develop a level of abstraction appropriate to each." (Kenneth E Boulding, General Systems Theory - The Skeleton of Science, Management Science Vol. 2 (3), 1956)

"In a general way it may be said that to think in terms of systems seems the most appropriate conceptual response so far available when the phenomena under study - at any level and in any domain--display the character of being organized, and when understanding the nature of the interdependencies constitutes the research task. In the behavioral sciences, the first steps in building a systems theory were taken in connection with the analysis of internal processes in organisms, or organizations, when the parts had to be related to the whole." (Fred Emery, "The Causal Texture of Organizational Environments", 1963)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"General systems theory (in the narrow sense of the term) is a discipline concerned with the general properties and laws of 'systems' . A system is defined as a complex of components in interaction, or by some similar proposition. Systems theory tries to develop those principles that apply to systems in general, irrespective of the nature of the system, of their components, and of the relations or 'forces' between them. The system components need not even be material, as, for example, in the system analysis of a commercial enterprise where components such as buildings, machines, personnel, money and 'good will' of customers enter." (Ludwig von Bertalanffy, "Robots, Men and Minds", 1967)

"The fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioral and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Thus, there exist models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relations or 'forces' between them. It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general. In this way, we postulate a new discipline called General Systems Theory. Its subject matter is the formulation and derivation of those principles, which are valid for 'systems' in general." (Ludwig von Bertalanffy, "General System Theory", 1968) 

"The words 'general systems theory' imply that some things can usefully be said about (living) systems in general, despite the immense diversity of their specific forms. One of these things should be a scheme of classification. Every science begins by classifying its subject matter, if only descriptively, and learns a lot about it in the process; and systems especially need this attention, because an adequate classification cuts across familiar boundaries and at the same time draws valid and important distinctions which have previously been sensed but not defined." (Geoffrey Vickers, 1970)

"General systems theory is the scientific exploration of 'wholes' and 'wholeness' which, not so long ago, were considered metaphysical notions transcending the boundaries of science. Hierarchic structure, stability, teleology, differentiation, approach to and maintenance of steady states, goal-directedness - these are a few of such general system properties." (Ervin László, "Introduction to Systems Philosophy", 1972)

"General systems theory deals with the most fundamental concepts and aspects of systems. Many theories dealing with more specific types of systems (e. g., dynamical systems, automata, control systems, game-theoretic systems, among many others) have been under development for quite some time. General systems theory is concerned with the basic issues common to all these specialized treatments. Also, for truly complex phenomena, such as those found predominantly in the social and biological sciences, the specialized descriptions used in classical theories (which are based on special mathematical structures such as differential or difference equations, numerical or abstract algebras, etc.) do not adequately and properly represent the actual events. Either because of this inadequate match between the events and types of descriptions available or because of the pure lack of knowledge, for many truly complex problems one can give only the most general statements, which are qualitative and too often even only verbal. General systems theory is aimed at providing a description and explanation for such complex phenomena." (Mihajlo D. Mesarovic & Yasuhiko Takahare, "General Systems Theory: Mathematical foundations", 1975)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"No matter how abstractly formulated are a general theory of systems, a general theory of evolution and a general theory of communication, all three theoretical components are necessary for the specifically sociological theory of society. They are mutually interdependent." (Niklas Luhmann, "The Differentiation of Society", 1982)

"Systems theory pursues the scientific exploration and understanding of systems that exist in the various realms of experience, in order to arrive at a general theory of systems: an organized expressing of sets of interrelated concepts and principles that apply to all systems." (Béla H Bánáthy, "Systems Design of Education", 1991)

"With the subsequent strong support from cybernetics, the concepts of systems thinking and systems theory became integral parts of the established scientific language, and led to numerous new methodologies and applications - systems engineering, systems analysis, systems dynamics, and so on." (Fritjof Capra, "The Web of Life", 1996)

❄️Systems Thinking: On Chaos Theory (Quotes)

"Fractal geometry and chaos theory can convey a new level of understanding to systems engineering and make it more effective." (Arthur D Hall, "The fractal architecture of the systems engineering method", 1989)

"The chaos theory will require scientists in all fields to, develop sophisticated mathematical skills, so that they will be able to better recognize the meanings of results. Mathematics has expanded the field of fractals to help describe and explain the shapeless, asymmetrical find randomness of the natural environment." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"The term chaos is also used in a general sense to describe the body of chaos theory, the complete sequence of behaviours generated by feed-back rules, the properties of those rules and that behaviour." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"Chaos theory explains the ways in which natural and social systems organize themselves into stable entities that have the ability to resist small disturbances and perturbations. It also shows that when you push such a system too far it becomes balanced on a metaphoric knife-edge. Step back and it remains stable; give it the slightest nudge and it will move into a radically new form of behavior such as chaos." (F David Peat, "From Certainty to Uncertainty", 2002)

"In chaos theory this 'butterfly effect' highlights the extreme sensitivity of nonlinear systems at their bifurcation points. There the slightest perturbation can push them into chaos, or into some quite different form of ordered behavior. Because we can never have total information or work to an infinite number of decimal places, there will always be a tiny level of uncertainty that can magnify to the point where it begins to dominate the system. It is for this reason that chaos theory reminds us that uncertainty can always subvert our attempts to encompass the cosmos with our schemes and mathematical reasoning." (F David Peat, "From Certainty to Uncertainty", 2002)

"Chaos theory revealed that simple nonlinear systems could behave in extremely complicated ways, and showed us how to understand them with pictures instead of equations. Complexity theory taught us that many simple units interacting according to simple rules could generate unexpected order. But where complexity theory has largely failed is in explaining where the order comes from, in a deep mathematical sense, and in tying the theory to real phenomena in a convincing way. For these reasons, it has had little impact on the thinking of most mathematicians and scientists." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Chaos theory, for example, uses the metaphor of the ‘butterfly effect’. At critical times in the formation of Earth’s weather, even the fluttering of the wings of a butterfly sends ripples that can tip the balance of forces and set off a powerful storm. Even the smallest inanimate objects sent back into the past will inevitably change the past in unpredictable ways, resulting in a time paradox." (Michio Kaku, "Parallel Worlds", 2004)

"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, Chaos Theory: A Brief Introduction, 2006)

"Yet, with the discovery of the butterfly effect in chaos theory, it is now understood that there is some emergent order over time even in weather occurrence, so that weather prediction is not next to being impossible as was once thought, although the science of meteorology is far from the state of perfection." (Peter Baofu, "The Future of Complexity: Conceiving a Better Way to Understand Order and Chaos", 2007)

"[chaos theory] presents a universe that is at once deterministic and obeys the fundamental physical laws, but is capable of disorder, complexity, and unpredictability. It shows that predictability is a rare phenomenon operating only within the constraints that science has filtered out from the rich diversity of our complex world." (Ziauddin Sardar & Iwona Abrams, "Introducing Chaos: A Graphic Guide", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"An ending is an artificial device; we like endings, they are satisfying, convenient, and a point has been made. But time does does not end, and stories march in step with time. Equally, chaos theory does not assume an ending; the ripple effect goes on, and on." (Penelope Lively, "How It All Began", 2011)

"The things that really change the world, according to Chaos theory, are the tiny things. A butterfly flaps its wings in the Amazonian jungle, and subsequently a storm ravages half of Europe." (Neil Gaiman, "Good Omens", 2011)

❄️Systems Thinking: On Complexity Theory (Quotes)

"Complexity theory began with an interest on how order spring from chaos. According to complexity theory, adaption is most effective in systems that are only partially connected. The argument is that too much structure creates gridlock, while too little structure creates chaos. […] Consequently, the key to effective change is to stay poised on this edge of chaos. Complexity theory focuses managerial thinking on the interrelationships among different parts of an organization and on the trade-off of less control for greater adaptation." (Shona Brown, "Competing on the Edge, 1998) 

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers, "Complexity and Postmodernism", 1998)

"Complexity theory is really a movement of the sciences. Standard sciences tend to see the world as mechanistic. That sort of science puts things under a finer and finer microscope. […] The movement that started complexity looks in the other direction. It’s asking, how do things assemble themselves? How do patterns emerge from these interacting elements? Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, "Coming from Your Inner Self", 1999)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial. No matter how puzzled we are by the behavior of an electron or an atom, we rarely call it complex, as quantum mechanics offers us the tools to describe them with remarkable accuracy. The demystification of crystals-highly regular networks of atoms and molecules-is one of the major success stories of twentieth-century physics, resulting in the development of the transistor and the discovery of superconductivity. Yet, we continue to struggle with systems for which the interaction map between the components is less ordered and rigid, hoping to give self-organization a chance." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Chaos theory revealed that simple nonlinear systems could behave in extremely complicated ways, and showed us how to understand them with pictures instead of equations. Complexity theory taught us that many simple units interacting according to simple rules could generate unexpected order. But where complexity theory has largely failed is in explaining where the order comes from, in a deep mathematical sense, and in tying the theory to real phenomena in a convincing way. For these reasons, it has had little impact on the thinking of most mathematicians and scientists." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity Theory is concerned with the study of the intrinsic complexity of computational tasks. Its 'final' goals include the determination of the complexity of any well-defined task. Additional goals include obtaining an understanding of the relations between various computational phenomena (e.g., relating one fact regarding computational complexity to another). Indeed, we may say that the former type of goal is concerned with absolute answers regarding specific computational phenomena, whereas the latter type is concerned with questions regarding the relation between computational phenomena." (Oded Goldreich, "Computational Complexity: A Conceptual Perspective", 2008)

"The addition of new elements or agents to a particular system multiplies exponentially the number of connections or potential interactions among those elements or agents, and hence the number of possible outcomes. This is an important attribute of complexity theory." (Mark Marson, "What Are Its Implications for Educational Change?", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Complexity theory embraces things that are complicated, involve many elements and many interactions, are not deterministic, and are given to unexpected outcomes. […] A fundamental aspect of complexity theory is the overall or aggregate behavior of a large number of items, parts, or units that are entangled, connected, or networked together. […] In contrast to classical scientific methods that directly link theory and outcome, complexity theory does not typically provide simple cause-and-effect explanations." (Robert E Gunther et al, "The Network Challenge: Strategy, Profit, and Risk in an Interlinked World", 2009)

22 November 2020

❄️Systems Thinking: On Complex Systems (Quotes)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"Cybernetics is likely to reveal a great number of interesting and suggestive parallelisms between machine and brain and society. And it can provide the common language by which discoveries in one branch can readily be made use of in the others. [...] [There are] two peculiar scientific virtues of cybernetics that are worth explicit mention. One is that it offers a single vocabulary and a single set of concepts suitable for representing the most diverse types of system. [...] The second peculiar virtue of cybernetics is that it offers a method for the scientific treatment of the system in which complexity is outstanding and too important to be ignored. Such systems are, as we well know, only too common in the biological world!" (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"In the simpler systems, the methods of cybernetics sometimes show no obvious advantage over those that have long been known. It is chiefly when the systems become complex that the new methods reveal their power." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society, Vol. 106 (6), 1962)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"Even in a complex system only one or a few loops dominate the behavior of a variable of interest over an interval of time. […] These loops that dominate the behavior of a variable shift and usually produce different characteristic behavior due to the shift." (Carl V Swanson, "Notions Useful for the Analysis of Complex Feedback Systems", 1968)

"Like all systems, the complex system is an interlocking structure of feedback loops [...] This loop structure surrounds all decisions public or private, conscious or unconscious. The processes of man and nature, of psychology and physics, of medicine and engineering all fall within this structure [...]" (Jay W Forrester, "Urban Dynamics", 1969)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"A nonlinear relationship causes the feedback loop of which it is a part to vary in strength, depending on the state of the system. Linked nonlinear feedback loops thus form patterns of shifting loop dominance- under some conditions one part of the system is very active, and under other conditions another set of relationships takes control and shifts the entire system behavior. A model composed of several feedback loops linked nonlinearly can produce a wide variety of complex behavior patterns." (Jørgen Randers, "Elements of the System Dynamics Method", 1980)

"[…] a complex system is incomprehensible unless we can simplify it by using alternative levels of description." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"[…] complexity emerges from simplicity when alternative descriptions of a system are not reducible to each other. For a given observer, the more such inequivalent descriptions he or she generates, the more complex the system appears. Conversely, a complex system can be simplified in one of two ways: reduce the number of potential descriptions (by restricting the observer's means of interaction with the system) and/or use a coarser notion of system equivalence, thus reducing the number of equivalence classes." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"Since most understanding and virtually all control is based upon a model (mental, mathematical, physical, or otherwise) of the system under study, the simplification imperative translates into a desire to obtain an equivalent, but reduced, representation of the original model of the system. This may involve omitting some of the original variables, aggregating others, ignoring weak couplings, regarding slowly changing variables as constants, and a variety of other subterfuges. All of these simplification techniques are aimed at reducing the degrees of freedom that the system has at its disposal to interact with its environment. A theory of system complexity would give us knowledge as to the limitations of the reduction process." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"If we want to solve problems effectively [...] we must keep in mind not only many features but also the influences among them. Complexity is the label we will give to the existence of many interdependent variables in a given system. The more variables and the greater their interdependence, the greater the system's complexity. Great complexity places high demands on a planner's capacity to gather information, integrate findings, and design effective actions. The links between the variables oblige us to attend to a great many features simultaneously, and that, concomitantly, makes it impossible for us to undertake only one action in a complex system." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"In short, complex adaptive systems are characterized by perpetual novelty." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"[...] it's essentially meaningless to talk about a complex adaptive system being in equilibrium: the system can never get there. It is always unfolding, always in transition. In fact, if the system ever does reach equilibrium, it isn't just stable. It's dead." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand." (Thomas Levenson, "Measure for Measure: A musical history of science", 1994)

"Artificial complex systems will be deliberately infused with organic principles simply to keep them going." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"In a complex system, it is not uncommon for subsystems to have goals that compete directly with or diverge from the goals of the overall system. […] Feedback gathered from small, local subsystems for use by larger subsystems may be either inaccurately conveyed or inaccurately interpreted. Yet it is this very flexibility and looseness that allow large, complex systems to endure, although it can be hard to predict what these organizations are likely to do next." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques can not easily handle the problem." (M Jamshidi, "Autonomous Control on Complex Systems: Robotic Applications", Current Advances in Mechanical Design and Production VII, 2000)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Strategy in complex systems must resemble strategy in board games. You develop a small and useful tree of options that is continuously revised based on the arrangement of pieces and the actions of your opponent. It is critical to keep the number of options open. It is important to develop a theory of what kinds of options you want to have open." (John H Holland, [presentation] 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"In a complex system, there is no such thing as simple cause and effect." (Margaret J Wheatley, "It's an Interconnected World", 2002)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003) 

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility [...] The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"This reduction principle - the reduction of the behavior of a complex system to the behavior of its parts - is valid only if the level of complexity of the system is rather low." (Andrzej P Wierzbicki & Yoshiteru Nakamori, "Creative Space: Models of Creative Processes for the Knowledge Civilization Age", Studies in Computational Intelligence Vol.10, 2006)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"[a complex system is] a system in which large networks of components with no central control and simple rules of operation give rise to complex collective behavior, sophisticated information processing, and adaptation via learning or evolution." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"A typical complex system consists of a vast number of identical copies of several generic processes, which are operating and interacting only locally or with a limited number of not necessary close neighbours. There is no global leader or controller associated to such systems and the resulting behaviour is usually very complex." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The difference between complex adaptive systems and self-organizing systems is that the former have the capacity to learn from their experience, and thus to embody successful patterns into their repertoire, although there is actually quite a deep relationship between self-organizing systems and complex adaptive systems. Adaptive entities can emerge at high levels of description in simple self-organizing systems, i.e., adaptive systems are not necessarily self-organizing systems with something extra thrown in." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Great powers are, I would suggest, complex systems, made up of a very large number of interacting components that are asymmetrically organized. […] They operate somewhere between order and disorder - on the 'edge of chaos' […] Such systems can appear to operate quite stably for some time; they seem to be in equilibrium but are, in fact, constantly adapting. But there comes a moment when complex systems 'go critical'. A very small trigger can set off a 'phase transition' from a benign equilibrium to a crisis […]" (Niall Ferguson, Foreign Affairs, 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Complex systems seem to have this property, with large periods of apparent stasis marked by sudden and catastrophic failures. These processes may not literally be random, but they are so irreducibly complex (right down to the last grain of sand) that it just won’t be possible to predict them beyond a certain level. […] And yet complex processes produce order and beauty when you zoom out and look at them from enough distance." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"We forget - or we willfully ignore - that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

[complex system:] "A system whose intricacy impedes the forecasting of its behaviour." (Valentina M Ghinea, "Modelling and Simulation of the Need for Harmonizing the European Higher Education Systems", Handbook of Research on Trends in European Higher Education Convergence, 2014)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

"A system which is usually composed of large number of possibly heterogeneous interacting agents, which are seen to exhibit emergent behavior. Emergence implies that system level behavior (macro level) cannot be inferred from observation of individual level behavior of its constituents (micro level). This absence of explicit links between the micro and macro levels makes complex systems especially difficult to analyze using traditional statistical and analytical techniques to study the dynamics of behavior. One typically requires the use of bottom up simulation based methods to study such systems. Complex systems are ubiquitous - markets, societies, social networks, the Internet, weather, ecosystems, are just a few examples." (Stephen E Glavin & Abhijit Sengupta, "Modelling of Consumer Goods Markets: An Agent-Based Computational Approach", Handbook of Research on Managing and Influencing Consumer Behavior, 2015)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

[complex system:] "The occurrence of new phenomena generated unpredictably by the interaction of simple rules and individual mechanisms that are in constant flux and interaction. Emergence suggests something novel is perpetually emerging at a systems/global level as the world and environment constantly shifts and changes at a mechanistic/local level." (Kathy Sanford & Tim Hopper, "Digital Media in the Classroom: Emergent Perspectives for 21st Century Learners", Handbook of Research on Digital Media and Creative Technologies, 2015)

"A system characterized by the number of the elements that constitute it, and by the nature of the interactions between these elements." (Manuela Piscitelli, "Application of Complexity Theory in Representation of the City", Handbook of Research on Chaos and Complexity Theory in the Social Sciences, 2016)

"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)

[complex system:] "System made up of many interconnected elements on various levels; interactions on lower levels give rise to events on higher levels." (Naomi Thompson & Joshua Danish, "Designing BioSim: Playfully Encouraging Systems Thinking in Young Children", Handbook of Research on Serious Games for Educational Applications, 2017)

❄️Systems Thinking: On Complexity (Quotes)

"Unity of plan everywhere lies hidden under the mask of diversity of structure - the complex is everywhere evolved out of the simple." (Thomas H Huxley, "A Lobster; or, the Study of Zoology", 1861)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctlvely rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)

"Man’s mind cannot grasp the causes of events in their completeness, but the desire to find those causes is implanted in man’s soul. And without considering the multiplicity and complexity of the conditions any one of which taken separately may seem to be the cause, he snatches at the first approximation to a cause that seems to him intelligible and says: ‘This is the cause!’" (Leo Tolstoy, "War and Peace", 1867)

"A strict materialist believes that everything depends on the motion of matter. He knows the form of the laws of motion though he does not know all their consequences when applied to systems of unknown complexity." (James C Maxwell, [Letter to Mark Pattison] 1868)

"[…] the simplicity of nature which we at present grasp is really the result of infinite complexity; and that below the uniformity there underlies a diversity whose depths we have not yet probed, and whose secret places are still beyond our reach." (William Spottiswoode, 1879)

"The aim of science is always to reduce complexity to simplicity." (William James, "The Principles of Psychology", 1890)

"If we study the history of science we see happen two inverse phenomena […] Sometimes simplicity hides under complex appearances; sometimes it is the simplicity which is apparent, and which disguises extremely complicated realities. […] No doubt, if our means of investigation should become more and more penetrating, we should discover the simple under the complex, then the complex under the simple, then again the simple under the complex, and so on, without our being able to foresee what will be the last term. We must stop somewhere, and that science may be possible, we must stop when we have found simplicity. This is the only ground on which we can rear the edifice of our generalizations." (Henri Poincaré, "Science and Hypothesis", 1901)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

"Cybernetics is likely to reveal a great number of interesting and suggestive parallelisms between machine and brain and society. And it can provide the common language by which discoveries in one branch can readily be made use of in the others. [...] [There are] two peculiar scientific virtues of cybernetics that are worth explicit mention. One is that it offers a single vocabulary and a single set of concepts suitable for representing the most diverse types of system. [...] The second peculiar virtue of cybernetics is that it offers a method for the scientific treatment of the system in which complexity is outstanding and too important to be ignored. Such systems are, as we well know, only too common in the biological world!" (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Expansion means complexity, and complexity decay." (C Northcote Parkinson, "In-laws and Outlaws", 1962)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society, Vol. 106 (6), 1962)

"Thus, the central theme that runs through my remarks is that complexity frequently takes the form of hierarchy, and that hierarchic systems have some common properties that are independent of their specific content. Hierarchy, I shall argue, is one of the central structural schemes that the architect of complexity uses." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"Nor does complexity deny the valid simplification which is part of the process of analysis, and even a method of achieving complex architecture itself." (Robert Venturi, "Complexity and Contradiction in Architecture", 1966)

"The ideas need not be complex. Most ideas that are successful are ludicrously simple. Successful ideas generally have the appearance of simplicity because they seem inevitable." (Sol LeWitt, "Paragraphs on Conceptual Art", 1967)

"Only a modern systems approach promises to get the full complexity of the interacting phenomena - to see not only the causes acting on the phenomena under study, the possible consequences of the phenomena and the possible mutual interactions of some of these factors, but also to see the total emergent processes as a function of possible positive and/or negative feedbacks mediated by the selective decisions, or "choices," of the individuals and groups directly involved." (Walter F Buckley,"Sociology and modern systems theory", 1967)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"The fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioral and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis." (Ludwig von Bertalanffy, "General System Theory", 1968)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"At each level of complexity, entirely new properties appear. [And] at each stage, entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one." (Herb Anderson, 1972)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"The beauty of physics lies in the extent which seemingly complex and unrelated phenomena can be explained and correlated through a high level of abstraction by a set of laws which are amazing in their simplicity." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"The systems view is the emerging contemporary view of organized complexity, one step beyond the Newtonian view of organized simplicity, and two steps beyond the classical world views of divinely ordered or imaginatively envisaged complexity."  (Ervin László, "Introduction to Systems Philosophy", 1972)

"Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius - and a lot of courage to move in the opposite direction." (Ernst F Schumacher, "Small is Beautiful", 1973)

"A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas." (Moshe F Rubinstein & Iris R Firstenberg, "Patterns of Problem Solving", 1975)

"The aim of the model is of course not to reproduce reality in all its complexity. It is rather to capture in a vivid, often formal, way what is essential to understanding some aspect of its structure or behavior." (Joseph Weizenbaum, "Computer power and human reason: From judgment to calculation", 1976)

"Do not be alarmed by simplification, complexity is often a device for claiming sophistication, or for evading simple truths." John K Galbraith, "The Age of Uncertainty", 1977)

"For any system the environment is always more complex than the system itself. No system can maintain itself by means of a point-for-point correlation with its environment, i.e., can summon enough 'requisite variety' to match its environment. So each one has to reduce environmental complexity - primarily by restricting the environment itself and perceiving it in a categorically preformed way. On the other hand, the difference of system and environment is a prerequisite for the reduction of complexity because reduction can be performed only within the system, both for the system itself and its environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"In the process of the evolution of life, as far as we know, the total mass of living matter has always been and is now increasing and growing more complex in its organization. To increase the complexity of the organization of biological forms, nature operates by trial and error. Existing forms are reproduced in many copies, but these are not identical to the original. Instead they differ from it by the presence of small random variations."  (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)

"This [organizational ecology] refers to the organizational field created by a number of organizations, whose interrelations compose a system at the level of the field as a whole. The overall field becomes the object of inquiry, not the single organization as related to its organization-set. The emergence of organizational ecology from earlier organization theory is traced and illustrated from empirical studies. Its relevance to the task of institution-building, in a world in which the environment has become exceedingly complex and more interdependent, is argued." (Eric Trist , "A concept of organizational ecology", Australian journal of management 2 (2), 1977)

"All nature is a continuum. The endless complexity of life is organized into patterns which repeat themselves at each level of system." (James G Miller, "Living Systems", 1978)

"Heavy dependence on direct observation is essential to biology not only because of the complexity of biological phenomena, but because of the intervention of natural selection with its criterion of adequacy rather than perfection. In a system shaped by natural selection it is inevitable that logic will lose its way." (George A Bartholomew, "Scientific innovation and creativity: a zoologist’s point of view", American Zoologist Vol. 22, 1982)

"Simplicity does not precede complexity, but follows it." (Alan J Perlis, "Epigrams on Programming", 1982)

"Curiously, the unexpected complexity that has been discovered in nature has not led to a slowdown in the progress of science, but on the contrary to the emergence of new conceptual structures that now appear as essential to our understanding of the physical world - the world that includes us. (Isabelle Stengers, "Order Out of Chaos", 1984)

"Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better." (Edsger W Dijkstra, "On the nature of Computing Science", 1984)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985) 

"All propaganda or popularization involves a putting of the complex into the simple, but such a move is instantly deconstructive. For if the complex can be put into the simple, then it cannot be as complex as it seemed in the first place; and if the simple can be an adequate medium of such complexity, then it cannot after all be as simple as all that." (Terry Eagleton, Against The Grain, 1986)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"The hardest problems we have to face do not come from philosophical questions about whether brains are machines or not. There is not the slightest reason to doubt that brains are anything other than machines with enormous numbers of parts that work in perfect accord with physical laws. As far as anyone can tell, our minds are merely complex processes. The serious problems come from our having had so little experience with machines of such complexity that we are not yet prepared to think effectively about them." (Marvin Minsky, 1986)

"In general, we seem to associate complexity with anything we find difficult to understand." (Robert L Flood, "Complexity: a definition by construction of a conceptual framework", Systems Research and Behavioral Science, 1987)

"Organized simplicity occurs where a small number of significant factors and a large number of insignificant factors appear initially to be complex, but on investigation display hidden simplicity." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"Man's attempts to control, service, and/ or design very complex situations have, however, often been fraught with disaster. A major contributory factor has been the unwitting adoption of piecemeal thinking, which sees only parts of a situation and its generative mechanisms. Additionally, it has been suggested that nonrational thinking sees only the extremes (the simple 'solutions' ) of any range of problem solutions. The net result of these factors is that situations exhibit counterintuitive behavior; outcomes of situations are rarely as we expect, but this is not an intrinsic property of situations; rather, it is largely caused by neglect of, or lack of respect being paid to, the nature and complexity of  a situation under investigation." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"The state of development of mathematical theory in relation to some attributes of complexity is a clear measure of our ability/inability to deal with that attribute […]" (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"Complexity is not an objective factor but a subjective one. Supersignals reduce complexity, collapsing a number of features into one. Consequently, complexity must be understood in terms of a specific individual and his or her supply of supersignals. We learn supersignals from experience, and our supply can differ greatly from another individual's. Therefore there can be no objective measure of complexity." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"If we want to solve problems effectively [...] we must keep in mind not only many features but also the influences among them. Complexity is the label we will give to the existence of many interdependent variables in a given system. The more variables and the greater their interdependence, the greater the system's complexity. Great complexity places high demands on a planner's capacity to gather information, integrate findings, and design effective actions. The links between the variables oblige us to attend to a great many features simultaneously, and that, concomitantly, makes it impossible for us to undertake only one action in a complex system." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"Modeling in its broadest sense is the cost-effective use of something in place of something else for some [cognitive] purpose. It allows us to use something that is simpler, safer, or cheaper than reality instead of reality for some purpose. A model represents reality for the given purpose; the model is an abstraction of reality in the sense that it cannot represent all aspects of reality. This allows us to deal with the world in a simplified manner, avoiding the complexity, danger and irreversibility of reality." (Jeff Rothenberg, "The Nature of Modeling. In: Artificial Intelligence, Simulation, and Modeling", 1989)

"We might think of complexity could be regarded as an objective attribute of systems. We might even think we could assign a numerical value to it, making it, for instance, the product of the number of features times the number of interrelationships. If a system had ten variables and five links between them, then its 'complexity quotient', measured in this way would be fifty. If there are no links, its complexity quotient would be zero. Such attempts to measure the complexity of a system have in fact been made." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity."  (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"Somehow the breathless world that we witness seems far removed from the timeless laws of Nature which govern the elementary particles and forces of Nature. The reason is clear. We do not observe the laws of Nature: we observe their outcomes. Since these laws find their most efficient representation as mathematical equations, we might say that we see only the solutions of those equations not the equations themselves. This is the secret which reconciles the complexity observed in Nature with the advertised simplicity of her laws." (John D Barrow, "New Theories of Everything", 1991)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand." (Thomas Levenson, "Measure for Measure: A musical history of science", 1994)

"A measure that corresponds much better to what is usually meant by complexity in ordinary conversation, as well as in scientific discourse, refers not to the length of the most concise description of an entity (which is roughly what AIC [algorithmic information content] is), but to the length of a concise description of a set of the entity’s regularities. Thus something almost entirely random, with practically no regularities, would have effective complexity near zero. So would something completely regular, such as a bit string consisting entirely of zeroes. Effective complexity can be high only a region intermediate between total order and complete." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

"Artificial complex systems will be deliberately infused with organic principles simply to keep them going." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Crude complexity is ‘the length of the shortest message that will describe a system, at a given level of coarse graining, to someone at a distance, employing language, knowledge, and understanding that both parties share (and know they share) beforehand." (Murray Gell-Mann, "What is Complexity?" Complexity Vol. 1 (1), 1995)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"In contemplating natural phenomena, we frequently have to distinguish between effective complexity and logical depth. For example, the apparently complicated pattern of energy levels of atomic nuclei might easily be misattributed to some complex law at the fundamental level, but it is now believed to follow from a simple underlying theory of quarks, gluons, and photons, although lengthy calculations would be required to deduce the detailed pattern from the basic equations. Thus the pattern has a good deal of logical depth and very little effective complexity." (Murray Gell-Mann, "What is Complexity?", Complexity Vol. 1 (1), 1995)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Light a fire, build up the steam, turn on a switch, and a linear system awakens. It’s ready to serve you. If it stalls, restart it. Simple collective systems can be awakened simply. But complex swarm systems with rich hierarchies take time to boot up. The more complex, the longer it takes to warm up. Each hierarchical layer has to settle down; lateral causes have to slosh around and come to rest; a million autonomous agents have to acquaint themselves. I think this will be the hardest lesson for humans to learn: that organic complexity will entail organic time." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"In constructing a model, we always attempt to maximize its usefulness. This aim is closely connected with the relationship among three key characteristics of every systems model: complexity, credibility, and uncertainty. This relationship is not as yet fully understood. We only know that uncertainty (predictive, prescriptive, etc.) has a pivotal role in any efforts to maximize the usefulness of systems models. Although usually (but not always) undesirable when considered alone, uncertainty becomes very valuable when considered in connection to the other characteristics of systems models: in general, allowing more uncertainty tends to reduce complexity and increase credibility of the resulting model. Our challenge in systems modelling is to develop methods by which an optimal level of allowable uncertainty can be estimated for each modelling problem." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"It has long been appreciated by science that large numbers behave differently than small numbers. Mobs breed a requisite measure of complexity for emergent entities. The total number of possible interactions between two or more members accumulates exponentially as the number of members increases. At a high level of connectivity, and a high number of members, the dynamics of mobs takes hold. " (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"The larger, more detailed and complex the model - the less abstract the abstraction – the smaller the number of people capable of understanding it and the longer it takes for its weaknesses and limitations to be found out." (John Adams, "Risk", 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Perhaps we all lose our sense of reality to the precise degree to which we are engrossed in our own work, and perhaps that is why we see in the increasing complexity of our mental constructs a means for greater understanding, even while intuitively we know that we shall never be able to fathom the imponderables that govern our course through life." (Winfried G Sebald, "The Rings of Saturn", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, 1999)

"Complexity is that property of a model which makes it difficult to formulate its overall behaviour in a given language, even when given reasonably complete information about its atomic components and their inter-relations." (Bruce Edmonds, "Syntactic Measures of Complexity", 1999)

"Sometimes, a deeper order - a better fit to a purpose - is achieved through simplification rather than further increases in complexity." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"The laws of nature are rigged not only in favor of complexity, or just in favor of life, but also in favor of mind. To put it dramatically, it implies that mind is written into the laws of nature in a fundamental way." (Paul C W  Davies, "The Fifth Miracle: The Search for the Origin and Meaning of Life", 1999)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"Maybe it is not complexity per se that is significant, but organized complexity." (Paul Davies, "The Origin of Life", 2003)

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"For a complex natural shape, dimension is relative. It varies with the observer. The same object can have more than one dimension, depending on how you measure it and what you want to do with it. And dimension need not be a whole number; it can be fractional. Now an ancient concept, dimension, becomes thoroughly modern." (Benoît Mandelbrot, "The (Mis)Behavior of Markets", 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility [...] The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"The most basic issue for organizational success is correctly matching a system’s complexity to its environment. When we want to accomplish a task, the complexity of the system performing that task must match the complexity of the task. In order to perform the matching correctly, one must recognize that each person has a limited level of complexity. Therefore, tasks become diff i cult because the complexity of a person is not large enough to handle the complexity of the task. The trick then is to distribute the complexity of the task among many individuals." (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004)

"When parts are acting independently, the fine scale behavior is more complex. When they are working together, the fine scale complexity is much smaller, but the behavior is on a larger scale. This means that complexity is always a trade-off, more complex at a large scale means simpler at a fine scale. This trade-off is a basic conceptual tool that we need in order to understand complex systems." (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004) 

"A key aspect of a probabilistic fractal is that it enables the generation of a great deal of apparent complexity, including extensive varying detail, from a relatively small amount of design information. Biology uses this same principle. Genes supply the design information, but the detail in an organism is vastly greater than the genetic design information."  (Ray Kurzweil, "The Singularity is Near", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"'Increasing complexity' on its own is not, however, the ultimate goal or end-product of these evolutionary processes. Evolution results in better answers, not necessarily more complicated ones. Sometimes a superior solution is a simpler one."  (Ray Kurzweil, "The Singularity is Near", 2005)

"It is science that brings us an understanding of the true complexity of natural systems. The insights from the science of ecology are teaching us how to work with the checks and balances of nature [...]." (Jamie Goode," The Science of Wine: From Vine to Glass", 2005)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"This reduction principle - the reduction of the behavior of a complex system to the behavior of its parts - is valid only if the level of complexity of the system is rather low." (Andrzej P Wierzbicki & Yoshiteru Nakamori, "Creative Space: Models of Creative Processes for the Knowledge Civilization Age", Studies in Computational Intelligence Vol.10, 2006)

"People don’t need to know all the details of how a complex mechanism actually works in order to use it, so they create a cognitive shorthand for explaining it, one that is powerful enough to cover their interactions with it, but that doesn’t necessarily reflect its actual inner mechanics. […] In the digital world, however, the differences between a user’s mental model and the implementation model are often quite distinct. The discrepancy between implementation and mental models is particularly stark in the case of software applications, where the complexity of implementation can make it nearly impossible for the user to see the mechanistic connections between his actions and the program’s reactions." (Alan Cooper et al,  "About Face 3: The Essentials of Interaction Design", 2007)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The addition of new elements or agents to a particular system multiplies exponentially the number of connections or potential interactions among those elements or agents, and hence the number of possible outcomes. This is an important attribute of complexity theory." (Mark Marson, "What Are Its Implications for Educational Change?", 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"Science reveals complexity unfolding in all dimensions and novel features emerging at all scales and organizational levels of the universe. The more we know the more we become aware of how much we do not know. […] Complexity itself is understood as a particular dynamic or 'movement' in time that is simultaneously stable and unstable, predictable and unpredictable, known and unknown, certain and uncertain." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, "God: The Failed Hypothesis", 2010)

"To model complexity we can't short-circuit any step - each step must be enacted individually. This means in effect that complexity can never be modeled other than by itself." (Des Greene, The Island, 2010)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"Complexity demands resilience, and that's what panarchy offers. Resilience in the face of complexity is a challenge even when you apply rigorous intelligence and integrity to develop a coherent and flexible strategy." (Robert D Steele, "The Open-Source Everything Manifesto: Transparency, Truth, and Trust", 2012)

"A self–organizing system acts autonomously, as if the interconnecting components had a single mind. And as these components spontaneously march to the beat of their own drummer, they organize, adapt, and evolve toward a greater complexity than one would ever expect by just looking at the parts by themselves." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Complexity has the propensity to overload systems, making the relevance of a particular piece of information not statistically significant. And when an array of mind-numbing factors is added into the equation, theory and models rarely conform to reality." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Complexity is the prodigy of the world. Simplicity is the sensation of the universe. Behind complexity, there is always simplicity to be revealed. Inside simplicity, there is always complexity to be discovered." (Gang Yu, “Data Warehousing in the Age of Big Data", 2013)

"Decentralized systems are the quintessential patrons of simplicity. They allow complexity to rise to a level at which it is sustainable, and no higher." (Lawrence K. Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Every system that has existed emerged somehow, from somewhere, at some point. Complexity science emphasizes the study of how systems evolve through their disorganized parts into an organized whole." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Under complexity science, the more interacting factors, the more unpredictable and irregular the outcome. To be succinct, the greater the complexity, the greater the unpredictability." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

"Complexity is a phenomenon that involves a lot of interaction and interference between a very large number of units. It is related to chance, while analysis involves uncertainties and random phenomena. With regard to chance and uncertainty the goal of complexity theory is or constant traffic movement in this direction: order-disorder-organization. The Science of Complexity is a rapidly developing corpus dedicated to the study of dynamic natural systems. A set of theories and sub-theories as theories interrelated Chaos of Disasters, of Fractals, and several others related to the phenomenon of self-organization, created and consolidated some of the key concepts in the characterization of contemporary science: chaos; nonlinearity; unpredictability; random; indeterminism; emergency; self-organization; self-similarity." (Mauro Chiarella, "Folds and Refolds: Space Generation, Shapes, and Complex Components", 2016)
Related Posts Plugin for WordPress, Blogger...