31 March 2020

Knowledge Representation: On Maps (Quotes)

"The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveler." (Philip Stanhope, "Letters Written by the Earl of Chesterfield to His Son", 1827)

"The world of ideas which it [mathematics] discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connexion of its parts, the infinite hierarchy and absolute evidence of the truths with which it is concerned, these, and such like, are the surest grounds of the title of mathematics to human regard, and would remain unimpeached and unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance." (James J Sylvester, [Presidential Address to British Association] 1869)

"What are the sciences but maps of universal laws, and universal laws but the channels of universal power; and universal power but the outgoings of a universal mind?" (Edward Thomson, "Evidences of Revealed Religion", 1872)

"Just as, in the map of a half-explored country, we see detached bits of rivers, isolated mountains, and undefined plains, not connected into any complete plan, so a new branch of knowledge consists of groups of facts, each group standing apart, so as not to allow us to reason from one to another." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"The first of the principles governing symbols is this: The symbol is NOT the thing symbolized; the word is NOT the thing; the map is NOT the territory it stands for." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

"We all inherit a great deal of useless knowledge, and a great deal of misinformation and error (maps that were formerly thought to be accurate), so that there is always a portion of what we have been told that must be discarded. But the cultural heritage of our civilization that is transmitted to us - our socially pooled knowledge, both scientific and humane - has been valued principally because we have believed that it gives us accurate maps of experience. The analogy of verbal words to maps is an important one [...]. It should be noticed at this point, however, that there are two ways of getting false maps of the world into our heads: first, by having them given to us; second, by creating them ourselves when we misread the true maps given to us." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

"A fundamental value in the scientific outlook is concern with the best available map of reality. The scientist will always seek a description of events which enables him to predict most by assuming least. He thus already prefers a particular form of behavior. If moralities are systems of preferences, here is at least one point at which science cannot be said to be completely without preferences. Science prefers good maps." (Anatol Rapoport, "Science and the goals of man: a study in semantic orientation", 1950)

"No map contains all the information about the territory it represents. The road map we get at the gasoline station may show all the roads in the state, but it will not as a rule show latitude and longitude. A physical map goes into details about the topography of a country but is indifferent to political boundaries. Furthermore, the scale of the map makes a big difference. The smaller the scale the less features will be shown." (Anatol Rapoport, "Science and the goals of man: a study in semantic orientation", 1950) 

"Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative."  (Arthur H Robinson, "Elements of Cartography", 1953)

"The design process involves a series of operations. In map design, it is convenient to break this sequence into three stages. In the first stage, you draw heavily on imagination and creativity. You think of various graphic possibilities, consider alternative ways." (Arthur H Robinson, "Elements of Cartography", 1953)

"Scientific research was much like prospecting: you went out and you hunted, armed with your maps and your instruments, but in the end your preparations did not matter, or even your intuition. You needed your luck, and whatever benefits accrued to the diligent, through sheer, grinding hard work." (Michael Crichton, "The Andromeda Strain", 1969)

"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)

"The orchard of science is a vast globe-encircling monster, without a map, and known to no one man; indeed, to no group of men fewer than the whole international mass of creative scientists. Within it, each observer clings to his own well-known and well-loved clump of trees. If he looks beyond, it is usually with a guilty sigh." (Isaac Asimov, "View from a Height", 1975)

"As we experience space, and construct representations of it, we know that it will be continuous, everything is somewhere, and no matter what other characteristics objects do not share, they always share relative location, that is, spatiality; hence the desirability of equating knowledge with space, an intellectual space. This assures an organization and basis for predictability, which are shared by absolutely everyone. This proposition appears to be so fundamental that apparently it is simply adopted a priori." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)

"Mapping is based on systems of assumptions, on logic, on human needs, and on human cognitive characteristics, very little of which has been recognized or discussed in cartography." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)

"A map seems the type of conceptual object, yet the interesting thing is the grotesquely token foot it keeps in the world of the physical, having the unreality without the far-fetched appropriateness of the edibles in Communion, being a picture to the degree that the sacrament is a meal. For a feeling of thorough transcendence such unobvious relations between the model and the representation seem essential, and the flimsy connection between acres of soil and their image on the map makes reading one an erudite act." (Robert Harbison, "Eccentric Spaces", 1977)

"The theory of probability is the only mathematical tool available to help map the unknown and the uncontrollable. It is fortunate that this tool, while tricky, is extraordinarily powerful and convenient." (Benoit Mandelbrot, "The Fractal Geometry of Nature", 1977)

"Mathematical equations and literary phrases are useful but they are no substitute for the spatial eloquence of the map." (Arthur H Robinson, "Uniqueness of the Map", American Cartographer Vol. 5 (1), 1978)

"Maps containing marks that indicate a variety of features at specific locations are easy to produce and often revealing for the reader. You can use dots, numbers, and shapes, with or without keys. The basic map must always be simple and devoid of unnecessary detail. There should be no ambiguity about what happens where." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Maps used as charts do not need fine cartographic detail. Their purpose is to express ideas, explain relationships, or store data for consultation. Keep your maps simple. Edit out irrelevant detail. Without distortion, try to present the facts as the main feature of your map, which should serve only as a springboard for the idea you're trying to put across." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"The prevailing style of management must undergo transformation. A system cannot understand itself. The transformation requires a view from outside. The aim [...] is to provide an outside view - a lens - that I call a system of profound knowledge. It provides a map of theory by which to understand the organizations that we work in." (Dr. W. Edwards Deming, "The New Economics for Industry, Government, Education", 1994)

"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"A good map tells a multitude of little white lies; it suppresses truth to help the user see what needs to be seen. Reality is three-dimensional, rich in detail, and far too factual to allow a complete yet uncluttered two-dimensional graphic scale model. Indeed, a map that did not generalize would be useless. But the value of a map depends on how well its generalized geometry and generalized content reflect a chosen aspect of reality." (Mark S Monmonier, "How to Lie with Maps" 2nd Ed., 1996)

"Not only is it easy to lie with maps, it's essential. To portray meaningful relationships for a complex, three-dimensional world on a flat sheet of paper or a video screen, a map must distort reality. As a scale model, the map must use symbols that almost always are proportionally much bigger or thicker than the features they represent. To avoid hiding critical information in a fog of detail, the map must offer a selective, incomplete view of reality. There's no escape from the cartographic paradox: to present a useful and truthful picture, an accurate map must tell white lies." (Mark S Monmonier, "How to Lie with Maps" 2nd Ed., 1996)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"The pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"[Maps] are a way of cataloguing the 'important' (and ignoring the 'unimportant') features of the earth’s surface and the social world; a way of accounting for the resources, objects and public infrastructure of the earth’s surface; and a tool for the representation and territorialization of space (emphasis in original)." (John Pickles, "A History of Spaces: Cartographic Reason, Mapping and the Geo-Coded World", 2004)

"On the maps provided by science, we find everything except ourselves." (Bryan Appleyard, "Understanding the Present: An Alternative History of Science", 2004)

"There is no end to the information we can use. A 'good' map provides the information we need for a particular purpose - or the information the mapmaker wants us to have. To guide us, a map’s designers must consider more than content and projection; any single map involves hundreds of decisions about presentation." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"A road plan can show the exact location, elevation, and dimensions of any part of the structure. The map corresponds to the structure, but it's not the same as the structure. Software, on the other hand, is just a codification of the behaviors that the programmers and users want to take place. The map is the same as the structure. […] This means that software can only be described accurately at the level of individual instructions. […] A map or a blueprint for a piece of software must greatly simplify the representation in order to be comprehensible. But by doing so, it becomes inaccurate and ultimately incorrect. This is an important realization: any architecture, design, or diagram we create for software is essentially inadequate. If we represent every detail, then we're merely duplicating the software in another form, and we're wasting our time and effort." (George Stepanek, "Software Project Secrets: Why Software Projects Fail", 2005) 

"The way you describe the tale is by telling the story. It is a balancing act and a dream. The more accurate the map, the more it resembles the territory. The most accurate map [...] would be the territory and thus would be perfectly accurate and perfectly useless. The tale is the map that is the territory." (Neil Gaiman, "Fragile Things: Short Fictions and Wonders", 2006)

"Science is the art of the appropriate approximation. While the flat earth model is usually spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use the flat earth model as an approximation to the more complicated shape." (Byron K Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected." (Reif Larsen, "The Selected Works of T S Spivet", 2009)

"If maps are essentially subjective, interpretative, and fictional constructs of facts, constructs that influence decisions, actions, and cultural values generally, then why not embrace the profound efficacy of mapping in exploring and shaping new realities? Why not embrace the fact that the potentially infinite capacity of mapping to find and found new conditions might enable more socially engaging modes of exchange within larger milieux?" (James Corner, "The Agency of Mapping: Speculation, Critique and Invention", 2011)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"[...] mapping is not the indiscriminate, blinkered accumulation and endless array of data, but rather an extremely shrewd and tactical enterprise, a practice of relational reasoning that intelligently unfolds new realities out of existing constraints, quantities, facts and conditions." (James Corner, "The Agency of Mapping: Speculation, Critique and Invention", 2011)

"Making a map is the physical production including conceptualization and design. Mapping is the mental interpretation of the world and although it must precede the map, it does not necessarily result in a map artifact. Mapping defined in mathematics is the correspondence between each element of a given set with each element of another. Similarly in linguistics emphasis is on the correspondence between associated elements of different types. For designers all drawings are maps - they represent relationships between objects, places and ideas." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Maps are parenthetical - maps frame what you want to hold apart from the real in the world. Maps do this by creating conceptual representations of the milieu using symbols and relations between symbols. [...] Maps, any map and every map, begin with a frame. This is the literal and conceptual demarcation between what is in the map and what is not. Making a map begins with an observation which is both a thought about thinking and the object of thought itself. The undifferentiated world cannot be apprehended, therefore; all maps have a frame whether a concept or a cosmography." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"The utility of mapping as a form of data visualization isn’t in accuracy or precision, but rather the map’s capacity to help us make and organize hypothesis about the world of ideas and things. hypothesis-making through the map isn’t strictly inductive or deductive, although it can use the thought process of either, but it is often based on general observations." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Using maps as communication tools masks their complexity as a mode of thinking. Maps act like language: we attribute the signs or marks in the map to a natural extension of thought. But post-structuralism exposed maps (like language) as artificial signs whose meaning is tethered to time, place, culture, gesture, smell - in short, a plethora of cognitive and phenomenal attributes of our communication ecology." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Maps also have the disadvantage that they consume the most powerful encoding channels in the visualization toolbox - position and size - on an aspect that is held constant. This leaves less effective encoding channels like color for showing the dimension of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"We cannot draw a complete map, a complete geometry, of everything that happens in the world, because such happenings - including among them the passage of time - are always triggered only by an interaction with, and with respect to, a physical system involved in the interaction. The world is like a collection of interrelated points of view. To speak of the world 'seen from outside' makes no sense, because there is no “outside” to the world." (Carlo Rovelli, "The Order of Time", 2018)

"Maps are a type of chart that can convey relationships about space and relationships between objects that we relate to in the real world. Their effectiveness as a communication medium is strongly influenced by a host of factors: the nature of spatial data, the form and structure of representation, their intended purpose, the experience of the audience, and the context in the time and space in which the map is viewed. In other words, maps are a ubiquitous representation of spatial information that we can understand and relate to." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

See also: Maps as Graphical RepresentationMaps and Mind

01 March 2020

Systems Thinking: On Feedback (Quotes)

"Purposeful active behavior may be subdivided into two classes: ‘feed-back’ (or ‘teleological’) and ‘non-feed-back’ (or ‘non-teleological’). The expression feed-back is used by engineers in two different senses. In a broad sense it may denote that some of the output energy of an apparatus or machine is returned as input; an example is an electrical amplifier with feed-back. The feed-back is in these cases positive - the fraction of the output which reenters the object has the same sign as the original input signal. Positive feed-back adds to the input signals, it does not correct them. The term feed-back is also employed in a more restricted sense to signify that the behavior of an object is controlled by the margin of error at which the object stands at a given time with reference to a relatively specific goal. The feed-back is then negative, that is, the signals from the goal are used to restrict outputs which would otherwise go beyond the goal. It is this second meaning of the term feed-back that is used here." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Technology", Philosophy of Science Vol. 10 (1), 1943)

"All purposeful behavior may be considered to require negative feed-back. If a goal is to be attained, some signals from the goal are necessary at some time to direct the behavior. By non-feed-back behavior is meant that in which there are no signals from the goal which modify the activity of the object in the course of the behavior. Thus, a machine may be set to impinge upon a luminous object although the machine may be insensitive to light." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Technology", Philosophy of Science Vol. 10 (1), 1943)

"It is my thesis that the physical functioning of the living individual and the operation of some of the newer communication machines are precisely parallel in their analogous attempts to control entropy through feedback. Both of them have sensory receptors as one stage of their cycle of operation: that is, in both of them there exists a special apparatus for collecting information from the outer world at low energy levels, and for making it available in the operation of the individual or of the machine. In both cases these external messages are not taken neat, but through the internal transforming powers of the apparatus, whether it be alive or dead. The information is then turned into a new form available for the further stages of performance. In both the animal and the machine this performance is made to be effective on the outer world. In both of them, their performed action on the outer world, and not merely their intended action, is reported back to the central regulatory apparatus." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"Feedback is a method of controlling a system by reinserting into it the results of its past performance. If these results are merely used as numerical data for the criticism of the system and its regulation, we have the simple feedback of the control engineers. If, however, the information which proceeds backward from the performance is able to change the general method and pattern of performance, we have a process which may be called learning." (Norbert Wiener, 1954)

"[...] the concept of 'feedback', so simple and natural in certain elementary cases, becomes artificial and of little use when the interconnexions between the parts become more complex. When there are only two parts joined so that each affects the other, the properties of the feedback give important and useful information about the properties of the whole. But when the parts rise to even as few as four, if every one affects the other three, then twenty circuits can be traced through them; and knowing the properties of all the twenty circuits does not give complete information about the system. Such complex systems cannot be treated as an interlaced set of more or less independent feedback circuits, but only as a whole. For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Negative feedback is the form normally encountered in the control of physical systems. Yet, positive feedback dominates in the growth and decline patterns of social systems." (Jay W Forrester, "Modeling the Dynamic Processes of Corporate Growth", 1964)

"Traditional organizational theories have tended to view the human organization as a closed system. This tendency has led to a disregard of differing organizational environments and the nature of organizational dependency on environment. It has led also to an over-concentration on principles of internal organizational functioning, with consequent failure to develop and understand the processes of feedback which are essential to survival." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"Like all systems, the complex system is an interlocking structure of feedback loops [...] This loop structure surrounds all decisions public or private, conscious or unconscious. The processes of man and nature, of psychology and physics, of medicine and engineering all fall within this structure [...]" (Jay W Forrester, "Urban Dynamics", 1969)

"Nonlinear coupling allows one feedback loop to dominate the system for a time and then cause this dominance to shift to another part of the system where behavior is so different that the two seem unrelated." (Jay W. Forrester, "Urban Dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"Whatever the system, adaptive change depends upon feedback loops, be it those provided by natural selection or those of individual reinforcement. In all cases, then, there must be a process of trial and error and a mechanism of comparison. […] By superposing and interconnecting many feedback loops, we (and all other biological systems) not only solve particular problems but also form habits which we apply to the solution of classes of problems." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"When the phenomena of the universe are seen as linked together by cause-and-effect and energy transfer, the resulting picture is of complexly branching and interconnecting chains of causation. In certain regions of this universe (notably organisms in environments, ecosystems, thermostats, steam engines with governors, societies, computers, and the like), these chains of causation form circuits which are closed in the sense that causal interconnection can be traced around the circuit and back through whatever position was (arbitrarily) chosen as the starting point of the description. In such a circuit, evidently, events at any position in the circuit may be expected to have effect at all positions on the circuit at later times." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"A nonlinear relationship causes the feedback loop of which it is a part to vary in strength, depending on the state of the system. Linked nonlinear feedback loops thus form patterns of shifting loop dominance- under some conditions one part of the system is very active, and under other conditions another set of relationships takes control and shifts the entire system behavior. A model composed of several feedback loops linked nonlinearly can produce a wide variety of complex behavior patterns." (Jørgen Randers, "Elements of the System Dynamics Method", 1980)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The autonomy of living systems is characterized by closed, recursive organization. [...] A system's highest order of recursion or feedback process defines, generates, and maintains the autonomy of a system. The range of deviation this feedback seeks to control concerns the organization of the whole system itself. If the system should move beyond the limits of its own range of organization it would cease to be a system. Thus, autonomy refers to the maintenance of a systems wholeness. In biology, it becomes a definition of what maintains the variable called living." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Ultimately, uncontrolled escalation destroys a system. However, change in the direction of learning, adaptation, and evolution arises from the control of control, rather than unchecked change per se. In general, for the survival and co-evolution of any ecology of systems, feedback processes must be embodied by a recursive hierarchy of control circuits." (Bradford P Keeney, "Aesthetics of Change", 1983)

"What is sometimes called 'positive feedback' or 'amplified deviation' is therefore a partial arc or sequence of a more encompassing negative feedback process. The appearance of escalating runaways in systems is a consequence of the frame of reference an observer has punctuated. Enlarging one's frame of reference enables the 'runaway' to be seen as a variation subject to higher orders of control." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984) 

"The term closed loop-learning process refers to the idea that one learns by determining what s desired and comparing what is actually taking place as measured at the process and feedback for comparison. The difference between what is desired and what is taking place provides an error indication which is used to develop a signal to the process being controlled." (Harold Chestnut, 1984) 

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"In many parts of the economy, stabilizing forces appear not to operate. Instead, positive feedback magnifies the effects of small economic shifts; the economic models that describe such effects differ vastly from the conventional ones. Diminishing returns imply a single equilibrium point for the economy, but positive feedback – increasing returns – makes for many possible equilibrium points. There is no guarantee that the particular economic outcome selected from among the many alternatives will be the ‘best’ one."  (W Brian Arthur, "Returns and Path Dependence in the Economy", 1994)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living systems" , 1996)

"[…] feedback is not necessarily transmitted and returned through the same system component - or even through the same system. It may travel through several intervening components within the system first, or return from an external system, before finally arriving again at the component where it started." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"Feedback is the transmission and return of information. […] A system has feedback within itself. But because all systems are part of larger systems, a system also has feedback between itself and external systems. In some systems, the feedback and adjustment processes happen so quickly that it is relatively easy for an observer to follow. In other systems, it may take a long time before the feedback is returned, so an observer would have trouble identifying the action that prompted the feedback." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"In a complex system, it is not uncommon for subsystems to have goals that compete directly with or diverge from the goals of the overall system. […] Feedback gathered from small, local subsystems for use by larger subsystems may be either inaccurately conveyed or inaccurately interpreted. Yet it is this very flexibility and looseness that allow large, complex systems to endure, although it can be hard to predict what these organizations are likely to do next." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"Reinforcing loops can be seen as the engines of growth and collapse. That is, they compound change in one direction with even more change in that direction. Many reinforcing loops have a quality of accelerating movement in a particular direction, a sense that the more one variable changes, the more another changes." (Virginia Anderson & Lauren Johnson, "Systems Thinking Basics: From Concepts to Causal Loops", 1997)

"Something of the previous state, however, survives every change. This is called in the language of cybernetics (which took it form the language of machines) feedback, the advantages of learning from experience and of having developed reflexes." (Guy Davenport, "The Geography of the Imagination: Forty Essays", 1997)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"All dynamics arise from the interaction of just two types of feedback loops, positive (or self-reinforcing) and negative (or self-correcting) loops. Positive loops tend to reinforce or amplify whatever is happening in the system […] Negative loops counteract and oppose change." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The self-reinforcing feedback between expectations and perceptions has been repeatedly demonstrated […]. Sometimes the positive feedback assists learning by sharpening our ability to perceive features of the environment, as when an experienced naturalist identifies a bird in a distant bush where the novice sees only a tangled thicket. Often, however, the mutual feedback of expectations and perception blinds us to the anomalies that might challenge our mental models and lead to deep insight." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"All models are mental projections of our understanding of processes and feedbacks of systems in the real world. The general approach is that models are as good as the system upon which they are based. Models should be designed to answer specific questions and only incorporate the necessary details that are required to provide an answer." (Hördur V Haraldsson & Harald U Sverdrup, "Finding Simplicity in Complexity in Biogeochemical Modelling", 2004)

"[…] some systems […] are very sensitive to their starting conditions, so that a tiny difference in the initial ‘push’ you give them causes a big difference in where they end up, and there is feedback, so that what a system does affects its own behavior." (John Gribbin, "Deep Simplicity", 2004)

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control". Reviews of Modern Physics Vol. 77, 2005)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"The notion of feedback to regulate servomechanisms is the control engineer’s contribu￾tion to understanding how systems can be sensed, and then sufficient sense made of this for the purpose of having the system behave agreeably. The cleverness of control has been to influence systems behavior when a priori knowledge of that system is difficult or impossible to achieve. Usually you need to know what it is you are controlling to have a chance of regulating its behavior; that is one consequence of the law of requisite variety." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"A perturbation in a system with a negative feedback mechanism will be reduced whereas in a system with positive feedback mechanisms, the perturbation will grow. Quite often, the system dynamics can be reduced to a low-order description. Then, the growth or decay of perturbations can be classified by the systems’ eigenvalues or the pseudospectrum." (Gerrit Lohmann, "Abrupt Climate Change Modeling", 2009)

"The work around the complex systems map supported a concentration on causal mechanisms. This enabled poor system responses to be diagnosed as the unanticipated effects of previous policies as well as identification of the drivers of the sector. Understanding the feedback mechanisms in play then allowed experimentation with possible future policies and the creation of a coherent and mutually supporting package of recommendations for change."  (David C Lane et al, "Blending systems thinking approaches for organisational analysis: reviewing child protection", 2015)

"Feedback systems are closed loop systems, and the inputs are changed on the basis of output. A feedback system has a closed loop structure that brings back the results of the past action to control the future action. In a closed system, the problem is perceived, action is taken and the result influences the further action. Thus, the distinguishing feature of a closed loop system is a feedback path of information, decision and action connecting the output to input." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)

Systems Thinking: On Stability (Quotes)

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951)

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"A real system is subject to perturbations and it is never possible to control its initial state exactly. This raises the question of stability: under a slight perturbation will the system remain near the equilibrium state or not?" Joseph P LaSalle & Solomon Lefschetz, "Stability by Liapunov's Direct Method with Applications", 1961) 

"[...] in a state of dynamic equilibrium with their environments. If they do not maintain this equilibrium they die; if they do maintain it they show a degree of spontaneity, variability, and purposiveness of response unknown in the non-living world. This is what is meant by ‘adaptation to environment’ […] [Its] essential feature […] is stability - that is, the ability to withstand disturbances." (Kenneth Craik, 'Living organisms', “The Nature of Psychology”, 1966)

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)

"There seems to be a time scale in all natural processes beyond which structural stability and calculability become incompatible." (René Thom, "Structural Stability and Morphogenesis", 1972)

"Stability theory is the study of systems under various perturbing influences. Since there are many systems, many types of influences, and many equations describing systems, this is an open-ended problem. A system is designed so that it will be stable under external influences. However, one cannot predict all external influences, nor predict the magnitude of those that occur. Consequently, we need control theory. If one is interested in stability theory, a natural result is a theory of control." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"Global stability of an equilibrium removes the restrictions on the initial conditions. In global asymptotic stability, solutions approach the equilibrium for all initial conditions. [...] In a study of local stability, first equilibrium solutions are identified, then linearization techniques are applied to determine the behavior of solutions near the equilibrium. If the equilibrium is stable for any set of initial conditions, then this type of stability is referred to as global stability." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)

"It is important to distinguish between local and global stability. Local stability of an equilibrium implies that solutions approach the equilibrium only if they arc initially close to it. For example, if the initial population size is very small and the zero equilibrium is stable, then extinction of the population may occur. however, it the initial population size is large, then local stability of the zero equilibrium tells nothing about population extinction. Global stability of an equilibrium is much stronger. Global stability implies that regardless of the initial population size, solutions approach the equilibrium. We state conditions for local stability and global stability of an equilibrium in the case or a scalar difference equation, where only one state is modeled such as population size. In addition, we state conditions for local stability of an equilibrium when several states are modeled by first-order difference equations or when one state is modeled by a second-order or higher-order difference equation. These latter conditions are known as the Jury conditions." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella Meadows, "Thinking in Systems: A Primer", 2008)

"There is common ground in analysing financial systems and ecosystems, especially in the need to identify conditions that dispose a system to be knocked from seeming stability into another, less happy state." (Robert M May et al, "Complex systems: Ecology for bankers" 2008)

"Among complex systems, stability is typically meta-stability, which is preserved through cycling, whilst growth and shrinkage are often components of a larger-scale, cyclic wave." (Nick Land, "Eternal Return, and After", 2011)

"But the history of large systems demonstrates that, once the hurdle of stability has been cleared, a more subtle challenge appears. It is the challenge of remaining stable when the rules change. Machines, like organizations or organisms, that fail to meet this challenge find that their previous stability is no longer of any use. The responses that once were life-saving now just make things worse. What is needed now is the capacity to re-write the procedure manual on short notice, or even (most radical change of all) to change goals." (John Gall, "The Systems Bible: The Beginner's Guide to Systems Large and Small"[Systematics 3rd Ed.], 2011)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity - the generation of new forms - is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"The qualitative structure of the flow can change as parameters are varied. In particular, fixed points can be created or destroyed, or their stability can change. These qualitative changes in the dynamics are called bifurcations, and the parameter values at which they occur are called bifurcation points. Bifurcations are important scientifically - they provide models of transitions and instabilities as some control parameter is varied." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

Systems Thinking: On Emergence (Quotes)

"The component parts of a vegetable or animal substance do not lose their mechanical and chemical properties as separate agents, when, by a peculiar mode of juxtaposition, they, as an aggregate whole, acquire physiological or vital properties in addition. Those bodies continue, as before, to obey mechanical and chemical laws, in so far as the operation of those laws is not counteracted by the new laws which govern them as organized beings. […] Though there are laws which, like those of chemistry and physiology, owe their existence to a breach of the principle of Composition of Causes, it does not follow that these peculiar, or, as they might be termed, heteropathic laws, are not capable of composition with one another." (John S Mill, "A System of Logic: Ratioconative and Inductive", 1843) [the heteropathic laws is synonymous with emergence]

"The higher quality emerges from the lower level of existence and has its roots therein, but it emerges therefrom, and it does not belong to that lower level, but constitutes its possessor a new order of existent with its special laws of behaviour. The existence of emergent qualities thus described is something to be noted, as some would say, under the compulsion of brute empirical fact, or, as I should prefer to say in less harsh terms, to be accepted with the ‘natural piety’ of the investigator. It admits no explanation." (Samuel Alexander, "Space, Time and Deity", 1922)

"This, however, is very speculative; the point of interest for our present enquiry is that physical reality is built up, apparently, from a few fundamental types of units whose properties determine many of the properties of the most complicated phenomena, and this seems to afford a sufficient explanation of the emergence of analogies between mechanisms and similarities of relation-structure among these combinations without the necessity of any theory of objective universals." (Kenneth Craik, "The Nature of Explanation", 1943)

"The moment of truth, the sudden emergence of a new insight, is an act of intuition. Such intuitions give the appearance of miraculous flushes, or short-circuits of reasoning. In fact they may be likened to an immersed chain, of which only the beginning and the end are visible above the surface of consciousness. The diver vanishes at one end of the chain and comes up at the other end, guided by invisible links. (Arthur Koestler, "The Act of Creation", 1964)

"The principle that whole entities exhibit properties which are meaningful only when attributed to the whole, not to its parts - e.g. the smell of ammonia. Every model of human activity system exhibits properties as a whole entity which derive from it component activities and their structure, but cannot be reduced to them." (Peter Checkland, "Systems Thinking, Systems Practice", 1981)

"[Hierarchy is] the principle according to which entities meaningfully treated as wholes are built up of smaller entities which are themselves wholes […] and so on. In hierarchy, emergent properties denote the levels." (Peter Checkland, "Systems Thinking, Systems Practice", 1981)

"Curiously, the unexpected complexity that has been discovered in nature has not led to a slowdown in the progress of science, but on the contrary to the emergence of new conceptual structures that now appear as essential to our understanding of the physical world - the world that includes us. (Isabelle Stengers, "Order Out of Chaos", 1984)

"Catastrophes are often stimulated by the failure to feel the emergence of a domain, and so what cannot be felt in the imagination is experienced as embodied sensation in the catastrophe. (William I Thompson, "Gaia, a Way of Knowing: Political Implications of the New Biology", 1987)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Clearly, complex adaptive systems have a tendency to give rise to other complex adaptive systems. […] The appearance of more and more complex forms is not a phenomenon restricted to the evolution of complex adaptive systems, although for those systems the possibility arises of a selective advantage being associated under certain circumstances with increased complexity." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof Capra, "The web of life: a new scientific understanding of living systems", 1996)

"It may not be obvious at first, but the study of emergence and model-building go hand in hand. The essence of model-building is shearing away detail to get at essential elements. A model, by concentrating on selected aspects of the world, makes possible the prediction and planning that reveal new possibilities. That is exactly the problem we face in trying to develop a scientific understanding of emergence." (John H Holland, "Emergence" , Philosophica 59, 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"The central proposition in [realistic thinking] is that human actions and interactions are processes, not systems, and the coherent patterning of those processes becomes what it becomes because of their intrinsic capacity, the intrinsic capacity of interaction and relationship, to form coherence. That emergent form is radically unpredictable, but it emerges in a controlled or patterned way because of the characteristic of relationship itself, creation and destruction in conditions at the edge of chaos." (Ralph D Stacey et al, "Complexity and Management: Fad or Radical Challenge to Systems Thinking?", 2000)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. The galloping horse illusion depends upon the persistence of the human retina/brain combination, for instance. Elemental gases bond in combination by sharing outer electrons, thereby altering the appearance and behavior of the combination. In every case of emergence, the source is interaction between the parts - sometimes, as with the brain, very many parts - so that the phenomenon defies simple explanation." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Another typical feature of theories of emergence is the layered view of nature. On this view, all things in nature belong to a certain level of existence, each according to its characteristic properties. These levels of existence constitute a hierarchy of increasing complexity that also corresponds to their order of appearance in the course of evolution." (Markus Eronen, "Emergence in the Philosophy of Mind", 2004)

"Emergence refers to the relationship between the details of a system and the larger view. Emergence does not emphasize the primary importance of the details or of the larger view; it is concerned with the relationship between the two. Specifically, emergence seeks to discover: Which details are important for the larger view, and which are not? How do collective properties arise from the properties of parts? How does behavior at a larger scale of the system arise from the detailed structure, behavior and relationships on a finer scale?" (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004) 

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"The beauty of nature insists on taking its time. Everything is prepared. Nothing is rushed. The rhythm of emergence is a gradual, slow beat; always inching its way forward, change remains faithful to itself until the new unfolds in the full confidence of true arrival. Because nothing is abrupt, the beginning of spring nearly always catches us unawares. It is there before we see it; and then we can look nowhere without seeing it. (John O'Donohue, "To Bless the Space Between Us: A Book of Blessings", 2008)

[emergence:] "The process of complex pattern formation from simpler rules; emergent properties are neither properties had by any parts of the system taken in isolation nor a resultant of a mere summation of properties of parts of the system." (Ani Calinescu & Janet Efstathiou, "Measures of Network Structure", Encyclopedia of Networked and Virtual Organizations, 2008) 

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Emergence is defined as the occurrence of new processes operating at a higher level of abstraction then is the level at which the local rules operate." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"The notion of emergence is used in a variety of disciplines such as evolutionary biology, the philosophy of mind and sociology, as well as in computational and complexity theory. It is associated with non-reductive naturalism, which claims that a hierarchy of levels of reality exist. While the emergent level is constituted by the underlying level, it is nevertheless autonomous from the constituting level. As a naturalistic theory, it excludes non-natural explanations such as vitalistic forces or entelechy. As non-reductive naturalism, emergence theory claims that higher-level entities cannot be explained by lower-level entities." (Martin Neumann, "An Epistemological Gap in Simulation Technologies and the Science of Society", 2011)

"System theorists know that it's easy to couple simple-to-understand systems into a ‘super system’ that's capable of displaying behavioral modes that cannot be seen in any of its constituent parts. This is the process called ‘emergence’." (John L Casti, [interview with Austin Allen], 2012)

"Every system that has existed emerged somehow, from somewhere, at some point. Complexity science emphasizes the study of how systems evolve through their disorganized parts into an organized whole." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Things evolve to evolve. Evolutionary processes are the linchpin of change. These processes of discovery represent a complexity of simple systems that flux in perpetual tension as they teeter at the edge of chaos. This whirlwind of emergence is responsible for the spontaneous order and higher, organized complexity so noticeable in biological evolution - one–celled critters beefing up to become multicellular organisms." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"This spontaneous emergence of order at critical points of instability, which is often referred to simply as 'emergence', is one of the hallmarks of life. It has been recognized as the dynamic origin of development, learning, and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Emergence is a nontrivial relationship between the properties of a system at microscopic and macroscopic scales. Macroscopic properties are called emergent when it is hard to explain them simply from microscopic properties." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

[emergence:] "A feature in a complex system that is generated through the dynamic interactions between the parts of a system at one level, and is realized at the next level of organization without intentionality or causality." (A Faye Bres, "Integral Post-Analysis of Design-Based Research of an Organizational Learning Process for Strategic Renewal of Environmental Management", Integral Theory and Transdisciplinary Action Research in Education, 2019)

Knowledge Representation: On Abstraction (Quotes)

"[Arithmetic] has a very great and elevating effect, compelling the soul to reason about abstract numbers, and rebelling against the introduction of visible or tangible objects into the argument." (Plato, "The Republic", cca 375 BC)

"While those whom devotion to abstract discussions has rendered unobservant of the facts are too ready to dogmatize on the basis of a few observations." (Aristotle, "De Caelo" ["On the Heavens"], cca. 350 BC)

"The exact kind of language we employ in philosophical analyses of abstract truth is one thing, and the language used in attempts to popularize the subject is another." (Marcus Tullius Cicero, "De officiis" ["On Duties"], cca.44 BC)

"It seems that all perception is but the grasping of the form of the perceived object in some manner. If, then, it is a perception of some material object, it consists in an apprehension of its form by abstracting it from matter in some way. But the kinds of abstraction are different and their degrees various. This is because, owing to matter, the material form is subject to certain states and conditions which do not belong to [the form] by itself insofar as it is this form. So sometimes the abstraction from matter is effected with all or some of these attachments, and sometimes it is complete in that the concept is abstracted from matter and from the accidents it possesses on account of the matter."(Avicenna Latinus [Ibn Sina], "Liber De anima", cca. 1014-1027)

"Sometimes a thing is perceived [via sense-perception] when it is observed; then it is imagined, when it is absent [in reality] through the representation of its form inside, Sense-perception grasps [the concept] insofar as it is buried in these accidents that cling to it because of the matter out of which it is made without abstracting it from [matter], and it grasps it only by means of a connection through position [ that exists] between its perception and its matter. It is for this reason that the form of [the thing] is not represented in the external sense when [sensation] ceases. As to the internal [faculty of] imagination, it imagines [the concept] together with these accidents, without being able to entirely abstract it from them. Still, [imagination] abstracts it from the afore-mentioned connection [through position] on which sense-perception depends, so that [imagination] represents the form [of the thing] despite the absence of the form's [outside] carrier." (Avicenna Latinus [Ibn Sina], "Pointer and Reminders", cca. 1030)

"Nor is it enough to say that the intelligible notions formed by the active intellect subsist somehow in the phantasmata (mental image), which are certainly intrinsic to us; for as we have already observed in treating the passive intellect, objects only become actually intelligible when abstracted from phantasmata; so that merely by way of the phantasmata, we cannot attribute the work of the active intellect to ourselves" (St. Thomas Aquinas, "De Anima" III, cca. 1268) [On Aristotle's phantasmata]

"Abstraction involves perceiving something, relating it to other things, grasping some common trait of those things, and conceiv­ing of the common trait as to it can be related not only to those things but also to other similar things."  (John Locke, "An Essay Concerning Human Understanding", 1689)

"But to form the idea of an object, and to form an idea simply is the same thing; the reference of the idea to an object being an extraneous denomination, of which in itself it bears no mark or character. Now as it is impossible to form an idea of an object, that is possessed of quantity and quality, and yet is possessed of no precise degree of either; it follows, that there is an equal impossibility of forming an idea, that is not limited and confined in both these particulars. Abstract ideas are therefore in themselves individual, however they may become general in their representation. The image in the mind is only that of a particular object, though the application of it in our reasoning be the same, as if it were universal." (David Hume, "Treatise of Human Nature", 1738)

"General abstract truth is the most precious of all blessings; without it, man is blind; it is the eye of reason." (Jean-Jacques Rousseau, "The Confessions of J. J. Rousseau", 1783)

"It is impossible to disassociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept a word is needed; to portray a phenomenon a concept is needed. All three mirror one and the same reality." (Antoine-Laurent Lavoisier, "Traite Elementaire de Chimie", 1789)

"Delight at having understood a very abstract and obscure system leads most people to believe in the truth of what it demonstrates." (Georg C Lichtenberg, Notebook J, 1789-1793)

"Whoever limits his exertions to the gratification of others, whether by personal exhibition, as in the case of the actor and of the mimic, or by those kinds of literary composition which are calculated for no end but to please or to entertain, renders himself, in some measure, dependent on their caprices and humours. The diversity among men, in their judgments concerning the objects of taste, is incomparably greater than in their speculative conclusions; and accordingly, a mathematician will publish to the world a geometrical demonstration, or a philosopher, a process of abstract reasoning, with a confidence very different from what a poet would feel, in communicating one of his productions even to a friend." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"Before abstraction everything is one, but one like chaos; after abstraction everything is united again, but this union is a free binding of autonomous, self-determined beings. Out of a mob a society has developed, chaos has been transformed into a manifold world." (G P Friedrich von Hardenberg [Novalis]," Blüthenstaub", 1798) 

"The expressions abstract and concrete refer not so much to the concepts themselves - for any concept is an abstract concept - as to their usage. And this usage can again have different grades; - according as one treats a concept now more, now less abstract or concrete, that is, takes away from or adds to it now more, now fewer definitions."(Immanuel Kant, "Logik: ein Handbuch zu Vorlesungen", 1800)

"Facts are the mere dross of history. It is from the abstract truth which interpenetrates them, and lies latent among them, like gold in the ore, that the mass derives its whole value: and the precious particles are generally combined with the baser in such a manner that the separation is a task of the utmost difficulty." (Thomas B Macaulay, "History", 1828)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space." (James J Sylvester, "A Probationary Lecture on Geometry", 1844)

"Fundamentally, as is readily seen, there exists neither force nor matter. Both are abstractions of things, such as they are, looked at from different standpoints. They complete and presuppose each other. Isolated they are meaningless." (Emil DuBois-Reymond, "Untersuchungen über tierische Elektrizität", 1848)

"Science gains from it [the pendulum] more than one can expect. With its huge dimensions, the apparatus presents qualities that one would try in vain to communicate by constructing it on a small [scale], no matter how carefully. Already the regularity of its motion promises the most conclusive results. One collects numbers that, compared with the predictions of theory, permit one to appreciate how far the true pendulum approximates or differs from the abstract system called 'the simple pendulum'." (Jean-Bernard-Léon Foucault, "Demonstration Experimentale du Movement de Rotation de la Terre", 1851)

"Beyond the little arithmetic required for the ordinary economies of life, the mass of college-bred men, unless engaged in the business of instruction or in pursuits which directly involve their application, from the time they leave their places of education, of whatever name, give up the Mathematics as a useless and hopeless abstraction." (Edward Everett, [address] 1857)

"The Mathematics, like language, (of which indeed they may be considered a species,) comprehending under that designation the whole science of number, space, form, time, and motion, as far as it can be expressed in abstract formulas, are evidently not only one of the most useful, but one of the grandest of studies." (Edward Everett, [address] 1857)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, „The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Purely mechanical phenomena do not exist […] are abstractions, made, either intentionally or from necessity, for facilitating our comprehension of things. The science of mechanics does not comprise the foundations, no, nor even a part of the world, but only an aspect of it." (Ernst Mach, "The Science of Mechanics", 1883)

"The theory most prevalent among teachers is that mathematics affords the best training for the reasoning powers; […] The modem, and to my mind true, theory is that mathematics is the abstract form of the natural sciences; and that it is valuable as a training of the reasoning powers, not because it is abstract, but because it is a representation of actual things." (Truman H Safford, "Mathematical Teaching and Its Modern Methods", 1886)

"[In mathematics] we behold the conscious logical activity of the human mind in its purest and most perfect form. Here we learn to realize the laborious nature of the process, the great care with which it must proceed, the accuracy which is necessary to determine the exact extent of the general propositions arrived at, the difficulty of forming and comprehending abstract concepts; but here we learn also to place confidence in the certainty, scope and fruitfulness of such intellectual activity." (Hermann Helmholtz, "Vorträge und Reden", 1896)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

"Mathematics is the most abstract of all the sciences. For it makes no external observations, nor asserts anything as a real fact. When the mathematician deals with facts, they become for him mere ‘hypotheses’; for with their truth he refuses to concern himself. The whole science of mathematics is a science of hypotheses; so that nothing could be more completely abstracted from concrete reality." (Charles S Peirce, "The Regenerated Logic", The Monist Vol. 7 (1), 1896)

"In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics, - provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary." (David Hilbert, "Die Theorie der algebraischen Zahlkorper", 1897)

"Our science, in contrast with others, is not founded on a single period of human history, but has accompanied the development of culture through all its stages. Mathematics is as much interwoven with Greek culture as with the most modern problems in Engineering. She not only lends a hand to the progressive natural sciences but participates at the same time in the abstract investigations of logicians and philosophers." (Felix Klein, "Klein und Riecke: Ueber angewandte Mathematik und Physik" 1900)

"The man of science deals with questions which commonly lie outside of the range of ordinary experience, which often have no immediately discernible relation to the affairs of everyday life, and which concentrate the mind upon apparent abstractions to an extraordinary degree." (Frank W Clarke, "The Man of Science in Practical Affairs", Appletons' Popular Science Monthly Vol. XLV, 1900)

"A mathematical theorem and its demonstration are prose. But if the mathematician is overwhelmed with the grandeur and wondrous harmony of geometrical forms, of the importance and universal application of mathematical maxims, or, of the mysterious simplicity of its manifold laws which are so self-evident and plain and at the same time so complicated and profound, he is touched by the poetry of his science; and if he but understands how to give expression to his feelings, the mathematician turns poet, drawing inspiration from the most abstract domain of scientific thought." (Paul Carus, „Friedrich Schiller: A Sketch of His Life and an Appreciation of His Poetry", 1905)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

[…] theory of numbers lies remote from those who are indifferent; they show little interest in its development, indeed they positively avoid it. [..] the pure theory of numbers is an extremely abstract thing, and one does not often find the gift of ability to understand with pleasure anything so abstract."  (Felix Klein, "Elementary Mathematics from an Advanced Standpoint", 1908)

"Poetry is a sort of inspired mathematics, which gives us equations, not for abstract figures, triangles, squares, and the like, but for the human emotions. If one has a mind which inclines to magic rather than science, one will prefer to speak of these equations as spells or incantations; it sounds more arcane, mysterious, recondite. " (Ezra Pound, "The Spirit of Romance", 1910)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality. " (Cassius J Keyser, "The Humanization of the Teaching of Mathematics", 1912)

"Even the most refined statistics are nothing but abstractions." (Walter Lippmann, "Politics, The Golden Rule and After", 1913)

"[…] science deals with but a partial aspect of reality, and there is no faintest reason for supposing that everything science ignores is less real than what it accepts. [...] Why is it that science forms a closed system? Why is it that the elements of reality it ignores never come in to disturb it? The reason is that all the terms of physics are defined in terms of one another. The abstractions with which physics begins are all it ever has to do with." (John W N Sullivan, "The Limitations of Science", 1915)

"Abstract as it is, science is but an outgrowth of life. That is what the teacher must continually keep in mind. […] Let him explain […] science is not a dead system - the excretion of a monstrous pedantism - but really one of the most vigorous and exuberant phases of human life." (George A L Sarton, "The Teaching of the History of Science", The Scientific Monthly, 1918)

"It is not surprising that the greatest mathematicians have again and again appealed to the arts in order to find some analogy to their own work. They have indeed found it in the most varied arts, in poetry, in painting, and in sculpture, although it would certainly seem that it is in music, the most abstract of all the arts, the art of number and of time, that we find the closest analogy." (Havelock Ellis, "The Dance of Life", 1923)

"Mathematics is thought moving in the sphere of complete abstraction from any particular instance of what it is talking about." (Alfred N Whitehead, "Science and the Modern World", 1925)

"Progress in truth - truth of science and truth of religion - is mainly a progress in the framing of concepts, in discarding artificial abstractions or partial metaphors, and in evolving notions which strike more deeply into the root of reality." (Alfred N Whitehead, "Religion in the Making, Truth and Criticism", 1926)

"Often a liberal antidote of experience supplies a sovereign cure for a paralyzing abstraction built upon a theory." (Benjamin N Cardozo, "The Paradoxes of Legal Science", 1928)

"Mathematics is the tool specially suited for dealing with abstract concepts of any kind and there is no limit to its power in this field." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"The steady progress of physics requires for its theoretical formulation a mathematics which get continually more advanced. […] it was expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms and definitions, while actually the modern physical developments have required a mathematics that continually shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and the advance in physics is to be associated with continual modification and generalisation of the axioms at the base of mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation." (Paul A M Dirac, "Quantities singularities in the electromagnetic field", Proceedings of the Royal Society of London, 1931)

"The fundamental concepts of physical science, it is now understood, are abstractions, framed by our mind, so as to bring order to an apparent chaos of phenomena." (Sir William C Dampier, "A History of Science and its Relations with Philosophy & Religion", 1931)

"It is the function of notions in science to be useful, to be interesting, to be verifiable and to acquire value from anyone of these qualities. Scientific notions have little to gain as science from being forced into relation with that formidable abstraction, ‘general truth’." (Wilfred Trotter, [paper delivered before the Royal College of Surgeons of England] 1932)

"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)

„[...] the abstract mathematical theory has an independent, if lonely existence of its own. But when a sufficient number of its terms are given physical definitions it becomes a part of a vital organism concerning itself at every instant with matters full of human significance. Every theorem can be given the form ‘if you do so and so, such and such will happen'." (Oswald Veblen, "Remarks on the Foundation of Geometry", Bulletin of the American Mathematical Society, Vol. 35, 1935)

"Given any domain of thought in which the fundamental objective is a knowledge that transcends mere induction or mere empiricism, it seems quite inevitable that its processes should be made to conform closely to the pattern of a system free of ambiguous terms, symbols, operations, deductions; a system whose implications and assumptions are unique and consistent; a system whose logic confounds not the necessary with the sufficient where these are distinct; a system whose materials are abstract elements interpretable as reality or unreality in any forms whatsoever provided only that these forms mirror a thought that is pure. To such a system is universally given the name Mathematics." (Samuel T. Sanders, "Mathematics", National Mathematics Magazine, 1937)

"Sooner or later the cold plunge into pure abstraction must be taken if one is to learn to swim in mathematics and to reason as rational, thinking human beings do." (Eric T Bell, "The Handmaiden of the Sciences", 1937)

"The longer mathematics lives the more abstract - and therefore, possibly also the more practical - it becomes." (Eric T Bell, "Men of Mathematics", 1937)

"Matter-of-fact is an abstraction, arrived at by confining thought to purely formal relations which then masquerade as the final reality. This is why science, in its perfection, relapses into the study of differential equations. The concrete world has slipped through the meshes of the scientific net." (Alfred N Whitehead, "Modes of Thought", 1938)

"The first thing to realize about physics […] is its extraordinary indirectness. […] For physics is not about the real world, it is about 'abstractions' from the real world, and this is what makes it so scientific. […] Theoretical physics runs merrily along with these unreal abstractions, but its conclusions are checked, at every possible point, by experiments." (Anthony Standen, "Science is a Sacred Cow", 1950)

"In mathematics […] we find two tendencies present. On the one hand, the tendency towards abstraction seeks to crystallise the logical relations inherent in the maze of materials [….] being studied, and to correlate the material in a systematic and orderly manner. On the other hand, the tendency towards intuitive understanding fosters a more immediate grasp of the objects one studies, a live rapport with them, so to speak, which stresses the concrete meaning of their relations." (David Hilbert, "Geometry and the imagination", 1952)

"There is nothing mysterious, as some have tried to maintain, about the applicability of mathematics. What we get by abstraction from something can be returned. (Raymond L Wilder, Introduction to the Foundations of Mathematics, 1952)

"The theory of relativity is a fine example of the fundamental character of the modern development of theoretical science. The initial hypotheses become steadily more abstract and remote from experience. On the other hand, it gets nearer to the grand aim of all science, which is to cover the greatest possible number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)


"Beauty had been born, not, as we so often conceive it nowadays, as an ideal of humanity, but as measure, as the reduction of the chaos of appearances to the precision of linear symbols. Symmetry, balance, harmonic division, mated and mensurated intervals – such were its abstract characteristics." (Herbert Read, "Icon and Idea: The Function of Art in the Development of Human Consciousness", 1955)


"Abstractions are wonderfully clever tools for taking things apart and for arranging things in patterns but they are very little use in putting things together and no use at all when it comes to determining what things are for." (Archibald MacLeish, "Why Do We Teach Poetry?", The Atlantic Monthly Vol. 197 (3), 1956)

"Behind these symbols lie the boldest, purest, coolest abstractions mankind has ever made. No schoolman speculating on essences and attributes ever approached anything like the abstractness of algebra." (Susanne K Langer, "Philosophy in a New Key", 1957)


"One great lesson that we can learn from its systematic absence in the work of the grand theorists is that every self-conscious thinker must at all times be aware of - and hence be able to control - the levels of abstraction on which he is working. The capacity to shuttle between levels of abstraction, with ease and with clarity, is a signal mark of the imaginative and systematic thinker." (C Wright Mills, "The Sociological Imagination", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)


"Mathematics is much more than a language for dealing with the physical world. It is a source of models and abstractions which will enable us to obtain amazing new insights into the way in which nature operates. Indeed, the beauty and elegance of the physical laws themselves are only apparent when expressed in the appropriate mathematical framework." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"Our science, in contrast with others, is not founded on a single period of human history, but has accompanied the development of culture through all its stages. Mathematics is as much interwoven with Greek culture as with the most modern problems in Engineering. She not only lends a hand to the progressive natural sciences but participates at the same time in the abstract investigations of logicians and philosophers." (Felix Klein, "Klein und Riecke: Ueber angewandte Mathematik und Physik" 1900)

"The man of science deals with questions which commonly lie outside of the range of ordinary experience, which often have no immediately discernible relation to the affairs of everyday life, and which concentrate the mind upon apparent abstractions to an extraordinary degree." (Frank W Clarke, "The Man of Science in Practical Affairs", Appletons' Popular Science Monthly Vol. XLV, 1900)

"A mathematical theorem and its demonstration are prose. But if the mathematician is overwhelmed with the grandeur and wondrous harmony of geometrical forms, of the importance and universal application of mathematical maxims, or, of the mysterious simplicity of its manifold laws which are so self-evident and plain and at the same time so complicated and profound, he is touched by the poetry of his science; and if he but understands how to give expression to his feelings, the mathematician turns poet, drawing inspiration from the most abstract domain of scientific thought." (Paul Carus, „Friedrich Schiller: A Sketch of His Life and an Appreciation of His Poetry", 1905)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

[…] theory of numbers lies remote from those who are indifferent; they show little interest in its development, indeed they positively avoid it. [..] the pure theory of numbers is an extremely abstract thing, and one does not often find the gift of ability to understand with pleasure anything so abstract."  (Felix Klein, "Elementary Mathematics from an Advanced Standpoint", 1908)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"Abstractness, sometimes hurled as a reproach at mathematics, is its chief glory and its surest title to practical usefulness. It is also the source of such beauty as may spring from mathematics." (Eric T Bell, "The Development of Mathematics", 1940)

"[…] there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, [...] the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as 'real', but [...] [a physicist] is trying to correlate the incoherent body of crude fact confronting him with some definite and orderly scheme of abstract relations, the kind of scheme he can borrow only from mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"We now come to a decisive step of mathematical abstraction: we forget about what the symbols stand for […] The mathematician] need not be idle; there are many operations which he may carry out with these symbols, without ever having to look at the things they stand for." (Hermann Weyl, "The Mathematical Way of Thinking", 1940)

"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

"The straight line of the geometers does not exist in the material universe. It is a pure abstraction, an invention of the imagination or, if one prefers, an idea of the Eternal Mind." (Eric T Bell, "The Magic of Numbers", 1946)

"I think that it is a relatively good approximation to truth - which is much too complicated to allow anything but approximations - that mathematical ideas originate in empirics. But, once they are conceived, the subject begins to live a peculiar life of its own and is […] governed by almost entirely aesthetical motivations. In other words, at a great distance from its empirical source, or after much ‘abstract’ inbreeding, a mathematical subject is in danger of degeneration. Whenever this stage is reached the only remedy seems to me to be the rejuvenating return to the source: the reinjection of more or less directly empirical ideas." (John von Neumann,  "The Mathematician", The Works of the Mind Vol. I (1), 1947)

"It is of our very nature to see the universe as a place that we can talk about. In particular, you will remember, the brain tends to compute by organizing all of its input into certain general patterns. It is natural for us, therefore, to try to make these grand abstractions, to seek for one formula, one model, one God, around which we can organize all our communication and the whole business of living." (John Z Young, "Doubt and Certainty in Science: A Biologist’s Reflections on the Brain", 1960)

"Relativity is inherently convergent, though convergent toward a plurality of centers of abstract truths. Degrees of accuracy are only degrees of refinement and magnitude in no way affects the fundamental reliability, which refers, as directional or angular sense, toward centralized truths. Truth is a relationship." (R Buckminster Fuller, "The Designers and the Politicians", 1962)

"Scientists, it should already be clear, never learn concepts, laws, and theories in the abstract and by themselves. Instead, these intellectual tools are from the start encountered in a historically and pedagogically prior unit that displays them with and through their applications." (Thomas Kuhn, "The Structure of Scientific Revolutions", 1962)

"With even a superficial knowledge of mathematics, it is easy to recognize certain characteristic features: its abstractions, its precision, its logical rigor, the indisputable character of its conclusions, and finally, the exceptionally broad range for its applications." (Aleksandr D Aleksandrov, 1963)

"A quantity like time, or any other physical measurement, does not exist in a completely abstract way. We find no sense in talking about something unless we specify how we measure it. It is the definition by the method of measuring a quantity that is the one sure way of avoiding talking nonsense..." (Hermann Bondi. "Relativity and Common Sense", 1964)

"If you have a large number of unrelated ideas, you have to get quite a distance away from them to get a view of all of them, and this is the role of abstraction. If you look at each too closely you see too many details. If you get far away things may appear simpler because you can only see the large, broad outlines; you do not get lost in petty details." (John G Kemeny, "Random Essays on Mathematics, Education, and Computers", 1964)

"The interplay between generality and individuality, deduction and construction, logic and imagination - this is the profound essence of live mathematics. Anyone or another of these aspects of mathematics can be found at the center of a given achievement. In a far reaching development all of them will be involved. Generally speaking, such a development will start from the 'concrete', then discard ballast by abstraction and rise to the lofty layers of thin air where navigation and observation are easy: after this flight comes the crucial test for learning and reaching specific goals in the newly surveyed low plains of individual 'reality'. In brief, the flight into abstract generality must start from and return again to the concrete and specific." (Richard Courant, "Mathematics in the Modern World", Scientific American Vol. 211 (3), 1964) 

"A more problematic example is the parallel between the increasingly abstract and insubstantial picture of the physical universe which modern physics has given us and the popularity of abstract and non-representational forms of art and poetry. In each case the representation of reality is increasingly removed from the picture which is immediately presented to us by our senses." (Harvey Brooks, "Scientific Concepts and Cultural Change", 1965)

"The more we are willing to abstract from the detail of a set of phenomena, the easier it becomes to simulate the phenomena. Moreover we do not have to know, or guess at, all the internal structure of the system but only that part of it that is crucial to the abstraction." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"Pure mathematics are concerned only with abstract propositions, and have nothing to do with the realities of nature. There is no such thing in actual existence as a mathematical point, line or surface. There is no such thing as a circle or square. But that is of no consequence. We can define them in words, and reason about them. We can draw a diagram, and suppose that line to be straight which is not really straight, and that figure to be a circle which is not strictly a circle. It is conceived therefore by the generality of observers, that mathematics is the science of certainty." (William Godwin, "Thoughts on Man", 1969)

"Science uses the senses but does not enjoy them; finally buries them under theory, abstraction, mathematical generalization." (Theodore Roszak, "Where the Wasteland Ends", 1972)
 
"The beauty of physics lies in the extent which seemingly complex and unrelated phenomena can be explained and correlated through a high level of abstraction by a set of laws which are amazing in their simplicity." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas." (Moshe F Rubinstein & Iris R Firstenberg, "Patterns of Problem Solving", 1975)

"The physicist who states a law of nature with the aid of a mathematical formula is abstracting a real feature of a real material world, even if he has to speak of numbers, vectors, tensors, state-functions, or whatever to make the abstraction." (Hilary Putnam, "Mathematics, Matter, and Method", 1975)

"Every word is an abstraction or category, not a particular." (Robert Pinsky, "The Situation of Poetry - Contemporary Poetry and its Traditions", 1976)

"Mathematical reality is in itself mysterious: how can it be highly abstract and yet applicable to the physical world? How can mathematical theorems be necessary truths about an unchanging realm of abstract entities and at the same time so useful in dealing with the contingent, variable and inexact happenings evident to the senses?" (Salomon Bochner, "The Role of Mathematics in the Rise of Science", 1981)

"Today abstraction is no longer that of the map, the double, the mirror, or the concept. Simulation is no longer that of a territory, a referential being or substance. It is the generation by models of a real without origin or reality: A hyperreal. The territory no longer precedes the map, nor does it survive it. It is nevertheless the map that precedes the territory - precession of simulacra - that engenders the territory." (Baudrillard Jean, "Simulacra and Simulation", 1981)

"[…] a mathematician's ultimate concern is that his or her inventions be logical, not realistic. This is not to say, however, that mathematical inventions do not correspond to real things. They do, in most, and possibly all, cases. The coincidence between mathematical ideas and natural reality is so extensive and well documented, in fact, that it requires an explanation. Keep in mind that the coincidence is not the outcome of mathematicians trying to be realistic - quite to the contrary, their ideas are often very abstract and do not initially appear to have any correspondence to the real world. Typically, however, mathematical ideas are eventually successfully applied to describe real phenomena […]"(Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"Language is the most formless means of expression. Its capacity to describe concepts without physical or visual references carries us into an advanced state of abstraction." (Ian Wilson, "Conceptual Art", 1984)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"A central problem in teaching mathematics is to communicate a reasonable sense of taste - meaning often when to, or not to, generalize, abstract, or extend something you have just done." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"There is no agreed upon definition of mathematics, but there is widespread agreement that the essence of mathematics is extension, generalization, and abstraction [… which] often bring increased confidence in the results of a specific application, as well as new viewpoints."  (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"In mathematics itself abstract algebra plays a dual role: that of a unifying link between disparate parts of mathematics  and that of a research subject with a highly active life of its own." (Israel N Herstein, "Abstract Algebra", 1986)

"A mental model is a data structure, in a computational system, that represents a part of the real world or of a fictitious world. It is assumed that there can be mental models of abstract realms, such as that of mathematics, but little more will be said about them. A model-theoretic semanticist is free to think of the entities in his model as actual items in the world.[...] Mental model is an appropriate term for the mental representations that underlie everyday reasoning about the world. To understand the everyday world is to have a theory of how it works." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"Metaphor [is] a pervasive mode of understanding by which we project patterns from one domain of experience in order to structure another domain of a different kind. So conceived metaphor is not merely a linguistic mode of expression; rather, it is one of the chief cognitive structures by which we are able to have coherent, ordered experiences that we can reason about and make sense of. Through metaphor, we make use of patterns that obtain in our physical experience to organise our more abstract understanding. " (Mark Johnson, "The Body in the Mind", 1987)

"The essence of modeling, as we see it, is that one begins with a nontrivial word problem about the world around us. We then grapple with the not always obvious problem of how it can be posed as a mathematical question. Emphasis is on the evolution of a roughly conceived idea into a more abstract but manageable form in which inessentials have been eliminated. One of the lessons learned is that there is no best model, only better ones."  (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)

"Probabilities are summaries of knowledge that is left behind when information is transferred to a higher level of abstraction." (Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible, Inference, 1988)

"[…] a model is the picture of the real - a short form of the whole. Hence, a model is an abstraction or simplification of a system. It is a technique by which aspects of reality can be 'artificially' represented or 'simulated' and at the same time simplified to facilitate comprehension." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science, Vol. 50, No. 2, 1989)

"As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than observation as its standard of truth, yet employs observation, simulation, and even experimentation as a means of discovering truth. "(National Research Council, "Everybody Counts", 1989)

"Modeling in its broadest sense is the cost-effective use of something in place of something else for some [cognitive] purpose. It allows us to use something that is simpler, safer, or cheaper than reality instead of reality for some purpose. A model represents reality for the given purpose; the model is an abstraction of reality in the sense that it cannot represent all aspects of reality. This allows us to deal with the world in a simplified manner, avoiding the complexity, danger and irreversibility of reality." (Jeff Rothenberg, "The Nature of Modeling. In: Artificial Intelligence, Simulation, and Modeling", 1989)

"All of engineering involves some creativity to cover the parts not known, and almost all of science includes some practical engineering to translate the abstractions into practice." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 1991)


"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)


"A mental model is not normally based on formal definitions but rather on concrete properties that have been drawn from life experience. Mental models are typically analogs, and they comprise specific contents, but this does not necessarily restrict their power to deal with abstract concepts, as we will see. The important thing about mental models, especially in the context of mathematics, is the relations they represent. […]  The essence of understanding a concept is to have a mental representation or mental model that faithfully reflects the structure of that concept. (Lyn D. English & Graeme S. Halford, "Mathematics Education: Models and Processes", 1995)


"Music and math together satisfied a sort of abstract 'appetite', a desire that was partly intellectual, partly aesthetic, partly emotional, partly, even, physical." (Edward Rothstein, "Emblems of Mind: The Inner Life of Music and Mathematics", 1995)


"The larger, more detailed and complex the model - the less abstract the abstraction – the smaller the number of people capable of understanding it and the longer it takes for its weaknesses and limitations to be found out." (John Adams, "Risk", 1995)


"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)


"Abstract concepts are largely metaphorical." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought", 1999)


"The abstractions of science are stereotypes, as two-dimensional and as potentially misleading as everyday stereotypes. And yet they are as necessary to the process of understanding as filtering is to the process of perception." (K C Cole, First You Build a Cloud and Other Reflections on Physics as a Way of Life, 1999)

"Abstraction is itself an abstract word and has no single meaning. […] Every word in our language is abstract, because it represents something else." (Eric Maisel, "The Creativity Book: A Year's Worth of Inspiration and Guidance", 2000)

"What cognitive capabilities underlie our fundamental human achievements? Although a complete answer remains elusive, one basic component is a special kind of symbolic activity - the ability to pick out patterns, to identify recurrences of these patterns despite variation in the elements that compose them, to form concepts that abstract and reify these patterns, and to express these concepts in language. Analogy, in its most general sense, is this ability to think about relational patterns." (Keith Holyoak et al, "Introduction: The Place of Analogy in Cognition", 2001)

"[…] we underestimate the share of randomness in about everything […]  The degree of resistance to randomness in one’s life is an abstract idea, part of its logic counterintuitive, and, to confuse matters, its realizations nonobservable." (Nassim N Taleb, "Fooled by Randomness", 2001)

"A model isolates one or a few causal connections, mechanisms, or processes, to the exclusion of other contributing or interfering factors - while in the actual world, those other factors make their effects felt in what actually happens. Models may seem true in the abstract, and are false in the concrete. The key issue is about whether there is a bridge between the two, the abstract and the concrete, such that a simple model can be relied on as a source of relevantly truthful information about the complex reality." (Uskali Mäki, "Fact and Fiction in Economics: Models, Realism and Social Construction", 2002)

"[Primes] are full of surprises and very mysterious […]. They are like things you can touch […] In mathematics most things are abstract, but I have some feeling that I can touch the primes, as if they are made of a really physical material. To me, the integers as a whole are like physical particles." (Yoichi Motohashi, "The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics", 2002)

"To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. Mathematics is the ultimate in technology transfer." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 2002)

"Do not be afraid of the word 'theory'. Yes, it can sound dauntingly abstract at times, and in the hands of some writers can appear to have precious little to do with the actual, visual world around us. Good theory however, is an awesome thing. [...] But unless we actually use it, it borders on the metaphysical and might as well not be used at all." (Richard Howells,  Visual Culture, 2003)

"Group theory is a branch of mathematics that describes the properties of an abstract model of phenomena that depend on symmetry. Despite its abstract tone, group theory provides practical techniques for making quantitative and verifiable predictions about the behavior of atoms, molecules and solids." (Arthur M Lesk, "Introduction to Symmetry and Group Theory for Chemists", 2004)

"Mathematics is not about abstract entities alone but is about relation of abstract entities with real entities. […] Adequacy relations between abstract and real entities provide space or opportunity where mathematical and logical thought operates parsimoniously."  (Navjyoti Singh, "Classical Indian Mathematical Thought", 2005)


"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 2007)

"Abstraction is a mental process we use when trying to discern what is essential or relevant to a problem; it does not require a belief in abstract entities." (Tom G Palmer, Realizing Freedom: Libertarian Theory, History, and Practice, 2009)

"In order to deal with these phenomena, we abstract from details and attempt to concentrate on the larger picture - a particular set of features of the real world or the structure that underlies the processes that lead to the observed outcomes. Models are such abstractions of reality. Models force us to face the results of the structural and dynamic assumptions that we have made in our abstractions." (Bruce Hannon and Matthias Ruth, "Dynamic Modeling of Diseases and Pests", 2009)

"It is from this continuousness of thought and perception that the scientist, like the writer, receives the crucial flash of insight out of which a piece of work is conceived and executed. And the scientist (again like the writer) is grateful when the insight comes, because insight is the necessary catalyst through which the abstract is made concrete, intuition be given language, language provides specificity, and real work can go forward." (Vivian Gornick, "Women in Science: Then and Now", 2009)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Presumably, one can become a mathematical genius only if one has an outstanding capacity for forming vivid mental represen­tations of abstract mathematical concepts - mental images that soon turn into an illusion, eclipsing the human origins of mathematical objects and endowing them with the semblance of an independent existence." (Stanislas Dehaene," The Number Sense: How the Mind Creates Mathematics", 2011) 

"There is no way to guarantee in advance what pure mathematics will later find application. We can only let the process of curiosity and abstraction take place, let mathematicians obsessively take results to their logical extremes, leaving relevance far behind, and wait to see which topics turn out to be extremely useful. If not, when the challenges of the future arrive, we won’t have the right piece of seemingly pointless mathematics to hand." (Peter Rowlett, "The Unplanned Impact of Mathematics", Nature Vol. 475 (7355), 2011) 

"There is no unique, global, and universal relation of identity for abstract objects. [...] Abstract objects are of different sorts and this should mean, almost by definition, that there is no global, universal identity for sorts. Each sort X is equipped with an internal relation of identity but there is no identity relation that would apply to all sorts." (Jean-Pierre Marquis," Categorical foundations of mathematics, or how to provide foundations for abstract mathematics", The Review of Symbolic Logic Vol. 6 (1), 2012) 

"Abstraction is an essential knowledge process, the process (or, to some, the alleged process) by which we form concepts. It consists in recognizing one or several common features or attributes (properties, predicates) in individ­uals, and on that basis stating a concept subsuming those common features or attributes. Concept is an idea, associated with a word expressing a prop­erty or a collection of properties inferred or derived from different samples. Subsumption is the logical technique to get generality from particulars." (Hourya B Sinaceur," Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

"In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a point well made by George Box in his oft-cited remark that "all models are wrong, but some are useful". (David Hand, "Wonderful examples, but let's not close our eyes", Statistical Science 29, 2014) 

"Mathematical abstraction is the process of considering and manipulating op­erations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content con­nected to particular applications. […] abstraction is the process of passing from things to ideas, properties and relations, to properties of relations and relations of properties, to properties of relations between properties, etc. Being a fundamental thinking process, abstraction has two faces: a logical face and evidently a psychological aspect that is the target of cognitive sciences." (Hourya B Sinaceur,"Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

"Models can be: formulations, abstractions, replicas, idealizations, metaphors - and combinations of these. [...] Some mathematical models have been blindly used - their presuppositions as little understood as any legal fine print one ‘agrees to’ but never reads - with faith in their trustworthiness. The very arcane nature of some of the formulations of these models might have contributed to their being given so much credence. If so, we mathematicians have an important mission to perform: to help people who wish to think through the fundamental assumptions underlying models that are couched in mathematical language, making these models intelligible, rather than (merely) formidable Delphic oracles." (Barry Mazur, "The Authority of the Incomprehensible" , 2014)

"The crucial concept that brings all of this together is one that is perhaps as rich and suggestive as that of a paradigm: the concept of a model. Some models are concrete, others are abstract. Certain models are fairly rigid; others are left somewhat unspecified. Some models are fully integrated into larger theories; others, or so the story goes, have a life of their own. Models of experiment, models of data, models in simulations, archeological modeling, diagrammatic reasoning, abductive inferences; it is difficult to imagine an area of scientific investigation, or established strategies of research, in which models are not present in some form or another. However, models are ultimately understood, there is no doubt that they play key roles in multiple areas of the sciences, engineering, and mathematics, just as models are central to our understanding of the practices of these fields, their history and the plethora of philosophical, conceptual, logical, and cognitive issues they raise." (Otávio Bueno, [in" Springer Handbook of Model-Based Science", Ed. by Lorenzo Magnani & Tommaso Bertolotti, 2017])

"The theory of groups is considered the language par excellence to study symmetry in science; it provides the mathematical formalism needed to tackle symmetry in a precise way. The aim of this chapter, therefore, is to lay the foundations of abstract group theory." (Pieter Thyssen & Arnout Ceulemans, "Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table", 2017)

Related Posts Plugin for WordPress, Blogger...