31 March 2020

Knowledge Representation: On Maps (Quotes)

"The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveler." (Philip Stanhope, "Letters Written by the Earl of Chesterfield to His Son", 1827)

"The world of ideas which it [mathematics] discloses or illuminates, the contemplation of divine beauty and order which it induces, the harmonious connexion of its parts, the infinite hierarchy and absolute evidence of the truths with which it is concerned, these, and such like, are the surest grounds of the title of mathematics to human regard, and would remain unimpeached and unimpaired were the plan of the universe unrolled like a map at our feet, and the mind of man qualified to take in the whole scheme of creation at a glance." (James J Sylvester, [Presidential Address to British Association] 1869)

"What are the sciences but maps of universal laws, and universal laws but the channels of universal power; and universal power but the outgoings of a universal mind?" (Edward Thomson, "Evidences of Revealed Religion", 1872)

"Just as, in the map of a half-explored country, we see detached bits of rivers, isolated mountains, and undefined plains, not connected into any complete plan, so a new branch of knowledge consists of groups of facts, each group standing apart, so as not to allow us to reason from one to another." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"The first of the principles governing symbols is this: The symbol is NOT the thing symbolized; the word is NOT the thing; the map is NOT the territory it stands for." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

"We all inherit a great deal of useless knowledge, and a great deal of misinformation and error (maps that were formerly thought to be accurate), so that there is always a portion of what we have been told that must be discarded. But the cultural heritage of our civilization that is transmitted to us - our socially pooled knowledge, both scientific and humane - has been valued principally because we have believed that it gives us accurate maps of experience. The analogy of verbal words to maps is an important one [...]. It should be noticed at this point, however, that there are two ways of getting false maps of the world into our heads: first, by having them given to us; second, by creating them ourselves when we misread the true maps given to us." (Samuel I Hayakawa, "Language in Thought and Action", 1949)

"A fundamental value in the scientific outlook is concern with the best available map of reality. The scientist will always seek a description of events which enables him to predict most by assuming least. He thus already prefers a particular form of behavior. If moralities are systems of preferences, here is at least one point at which science cannot be said to be completely without preferences. Science prefers good maps." (Anatol Rapoport, "Science and the goals of man: a study in semantic orientation", 1950)

"No map contains all the information about the territory it represents. The road map we get at the gasoline station may show all the roads in the state, but it will not as a rule show latitude and longitude. A physical map goes into details about the topography of a country but is indifferent to political boundaries. Furthermore, the scale of the map makes a big difference. The smaller the scale the less features will be shown." (Anatol Rapoport, "Science and the goals of man: a study in semantic orientation", 1950) 

"Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative."  (Arthur H Robinson, "Elements of Cartography", 1953)

"The design process involves a series of operations. In map design, it is convenient to break this sequence into three stages. In the first stage, you draw heavily on imagination and creativity. You think of various graphic possibilities, consider alternative ways." (Arthur H Robinson, "Elements of Cartography", 1953)

"Scientific research was much like prospecting: you went out and you hunted, armed with your maps and your instruments, but in the end your preparations did not matter, or even your intuition. You needed your luck, and whatever benefits accrued to the diligent, through sheer, grinding hard work." (Michael Crichton, "The Andromeda Strain", 1969)

"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)

"The orchard of science is a vast globe-encircling monster, without a map, and known to no one man; indeed, to no group of men fewer than the whole international mass of creative scientists. Within it, each observer clings to his own well-known and well-loved clump of trees. If he looks beyond, it is usually with a guilty sigh." (Isaac Asimov, "View from a Height", 1975)

"As we experience space, and construct representations of it, we know that it will be continuous, everything is somewhere, and no matter what other characteristics objects do not share, they always share relative location, that is, spatiality; hence the desirability of equating knowledge with space, an intellectual space. This assures an organization and basis for predictability, which are shared by absolutely everyone. This proposition appears to be so fundamental that apparently it is simply adopted a priori." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)

"Mapping is based on systems of assumptions, on logic, on human needs, and on human cognitive characteristics, very little of which has been recognized or discussed in cartography." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)

"A map seems the type of conceptual object, yet the interesting thing is the grotesquely token foot it keeps in the world of the physical, having the unreality without the far-fetched appropriateness of the edibles in Communion, being a picture to the degree that the sacrament is a meal. For a feeling of thorough transcendence such unobvious relations between the model and the representation seem essential, and the flimsy connection between acres of soil and their image on the map makes reading one an erudite act." (Robert Harbison, "Eccentric Spaces", 1977)

"The theory of probability is the only mathematical tool available to help map the unknown and the uncontrollable. It is fortunate that this tool, while tricky, is extraordinarily powerful and convenient." (Benoit Mandelbrot, "The Fractal Geometry of Nature", 1977)

"Mathematical equations and literary phrases are useful but they are no substitute for the spatial eloquence of the map." (Arthur H Robinson, "Uniqueness of the Map", American Cartographer Vol. 5 (1), 1978)

"Maps containing marks that indicate a variety of features at specific locations are easy to produce and often revealing for the reader. You can use dots, numbers, and shapes, with or without keys. The basic map must always be simple and devoid of unnecessary detail. There should be no ambiguity about what happens where." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Maps used as charts do not need fine cartographic detail. Their purpose is to express ideas, explain relationships, or store data for consultation. Keep your maps simple. Edit out irrelevant detail. Without distortion, try to present the facts as the main feature of your map, which should serve only as a springboard for the idea you're trying to put across." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"The prevailing style of management must undergo transformation. A system cannot understand itself. The transformation requires a view from outside. The aim [...] is to provide an outside view - a lens - that I call a system of profound knowledge. It provides a map of theory by which to understand the organizations that we work in." (Dr. W. Edwards Deming, "The New Economics for Industry, Government, Education", 1994)

"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"A good map tells a multitude of little white lies; it suppresses truth to help the user see what needs to be seen. Reality is three-dimensional, rich in detail, and far too factual to allow a complete yet uncluttered two-dimensional graphic scale model. Indeed, a map that did not generalize would be useless. But the value of a map depends on how well its generalized geometry and generalized content reflect a chosen aspect of reality." (Mark S Monmonier, "How to Lie with Maps" 2nd Ed., 1996)

"Not only is it easy to lie with maps, it's essential. To portray meaningful relationships for a complex, three-dimensional world on a flat sheet of paper or a video screen, a map must distort reality. As a scale model, the map must use symbols that almost always are proportionally much bigger or thicker than the features they represent. To avoid hiding critical information in a fog of detail, the map must offer a selective, incomplete view of reality. There's no escape from the cartographic paradox: to present a useful and truthful picture, an accurate map must tell white lies." (Mark S Monmonier, "How to Lie with Maps" 2nd Ed., 1996)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"The pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"[Maps] are a way of cataloguing the 'important' (and ignoring the 'unimportant') features of the earth’s surface and the social world; a way of accounting for the resources, objects and public infrastructure of the earth’s surface; and a tool for the representation and territorialization of space (emphasis in original)." (John Pickles, "A History of Spaces: Cartographic Reason, Mapping and the Geo-Coded World", 2004)

"On the maps provided by science, we find everything except ourselves." (Bryan Appleyard, "Understanding the Present: An Alternative History of Science", 2004)

"There is no end to the information we can use. A 'good' map provides the information we need for a particular purpose - or the information the mapmaker wants us to have. To guide us, a map’s designers must consider more than content and projection; any single map involves hundreds of decisions about presentation." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"A road plan can show the exact location, elevation, and dimensions of any part of the structure. The map corresponds to the structure, but it's not the same as the structure. Software, on the other hand, is just a codification of the behaviors that the programmers and users want to take place. The map is the same as the structure. […] This means that software can only be described accurately at the level of individual instructions. […] A map or a blueprint for a piece of software must greatly simplify the representation in order to be comprehensible. But by doing so, it becomes inaccurate and ultimately incorrect. This is an important realization: any architecture, design, or diagram we create for software is essentially inadequate. If we represent every detail, then we're merely duplicating the software in another form, and we're wasting our time and effort." (George Stepanek, "Software Project Secrets: Why Software Projects Fail", 2005) 

"The way you describe the tale is by telling the story. It is a balancing act and a dream. The more accurate the map, the more it resembles the territory. The most accurate map [...] would be the territory and thus would be perfectly accurate and perfectly useless. The tale is the map that is the territory." (Neil Gaiman, "Fragile Things: Short Fictions and Wonders", 2006)

"Science is the art of the appropriate approximation. While the flat earth model is usually spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use the flat earth model as an approximation to the more complicated shape." (Byron K Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected." (Reif Larsen, "The Selected Works of T S Spivet", 2009)

"If maps are essentially subjective, interpretative, and fictional constructs of facts, constructs that influence decisions, actions, and cultural values generally, then why not embrace the profound efficacy of mapping in exploring and shaping new realities? Why not embrace the fact that the potentially infinite capacity of mapping to find and found new conditions might enable more socially engaging modes of exchange within larger milieux?" (James Corner, "The Agency of Mapping: Speculation, Critique and Invention", 2011)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"[...] mapping is not the indiscriminate, blinkered accumulation and endless array of data, but rather an extremely shrewd and tactical enterprise, a practice of relational reasoning that intelligently unfolds new realities out of existing constraints, quantities, facts and conditions." (James Corner, "The Agency of Mapping: Speculation, Critique and Invention", 2011)

"Making a map is the physical production including conceptualization and design. Mapping is the mental interpretation of the world and although it must precede the map, it does not necessarily result in a map artifact. Mapping defined in mathematics is the correspondence between each element of a given set with each element of another. Similarly in linguistics emphasis is on the correspondence between associated elements of different types. For designers all drawings are maps - they represent relationships between objects, places and ideas." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Maps are parenthetical - maps frame what you want to hold apart from the real in the world. Maps do this by creating conceptual representations of the milieu using symbols and relations between symbols. [...] Maps, any map and every map, begin with a frame. This is the literal and conceptual demarcation between what is in the map and what is not. Making a map begins with an observation which is both a thought about thinking and the object of thought itself. The undifferentiated world cannot be apprehended, therefore; all maps have a frame whether a concept or a cosmography." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"The utility of mapping as a form of data visualization isn’t in accuracy or precision, but rather the map’s capacity to help us make and organize hypothesis about the world of ideas and things. hypothesis-making through the map isn’t strictly inductive or deductive, although it can use the thought process of either, but it is often based on general observations." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Using maps as communication tools masks their complexity as a mode of thinking. Maps act like language: we attribute the signs or marks in the map to a natural extension of thought. But post-structuralism exposed maps (like language) as artificial signs whose meaning is tethered to time, place, culture, gesture, smell - in short, a plethora of cognitive and phenomenal attributes of our communication ecology." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)

"Maps also have the disadvantage that they consume the most powerful encoding channels in the visualization toolbox - position and size - on an aspect that is held constant. This leaves less effective encoding channels like color for showing the dimension of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"We cannot draw a complete map, a complete geometry, of everything that happens in the world, because such happenings - including among them the passage of time - are always triggered only by an interaction with, and with respect to, a physical system involved in the interaction. The world is like a collection of interrelated points of view. To speak of the world “seen from outside” makes no sense, because there is no “outside” to the world." (Carlo Rovelli, "The Order of Time", 2018)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...