01 January 2026

❄️Systems Thinking: On Consequences (Quotes)

"A strict materialist believes that everything depends on the motion of matter. He knows the form of the laws of motion though he does not know all their consequences when applied to systems of unknown complexity." (James C Maxwell, [Letter to Mark Pattison] 1868)

"The thing the ecologically illiterate don't realize about an ecosystem is that it's a system. A system! A system maintains a certain fluid stability that can be destroyed by a misstep in just one niche. A system has order, a flowing from point to point. If something dams the flow, order collapses. The untrained miss the collapse until too late. That's why the highest function of ecology is the understanding of consequences." (Frank Herbert, "Dune", 1965)

"Only a modern systems approach promises to get the full complexity of the interacting phenomena - to see not only the causes acting on the phenomena under study, the possible consequences of the phenomena and the possible mutual interactions of some of these factors, but also to see the total emergent processes as a function of possible positive and/or negative feedbacks mediated by the selective decisions, or choices," of the individuals and groups directly involved." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"Communication theory deals with certain important but abstract aspects of communication. Communication theory proceeds from clear and definite assumptions to theorems concerning information sources and communication channels. In this it is essentially mathematical, and in order to understand it we must understand the idea of a theorem as a statement which must be proved, that is, which must be shown to be the necessary consequence of a set of initial assumptions. This is an idea which is the very heart of mathematics as mathematicians understand it." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)

"Everywhere […] in the Universe, we discern that closed physical systems evolve in the same sense from ordered states towards a state of complete disorder called thermal equilibrium. This cannot be a consequence of known laws of change, since […] these laws are time symmetric- they permit […] time-reverse. […] The initial conditions play a decisive role in endowing the world with its sense of temporal direction. […] some prescription for initial conditions is crucial if we are to understand […]" (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"An internal model allows a system to look ahead to the future consequences of current actions, without actually committing itself to those actions. In particular, the system can avoid acts that would set it irretrievably down some road to future disaster ('stepping off a cliff'). Less dramatically, but equally important, the model enables the agent to make current 'stage-setting' moves that set up later moves that are obviously advantageous. The very essence of a competitive advantage, whether it be in chess or economics, is the discovery and execution of stage-setting moves." (John H Holland, 1992)

"Third, social systems exhibit a conflict between short-term and long-term consequences of a policy change. A policy that produces improvement in the short run is usually one that degrades a system in the long run. Likewise, policies that produce long-run improvement may initially depress behavior of a system. This is especially treacherous. The short run is more visible and more compelling. Short-run pressures speak loudly for immediate attention. However, sequences of actions all aimed at short-run improvement can eventually burden a system with long-run depressants so severe that even heroic short-run measures no longer suffice. Many problems being faced today are the cumulative result of short-run measures taken in prior decades." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"There is a multilayering of global networks in the key strategic activities that structure and destructure the planet. When these multilayered networks overlap in some node, when there is a node that belongs to different networks, two major consequences follow. First, economies of synergy between these different networks take place in that node: between financial markets and media businesses; or between academic research and technology development and innovation; between politics and media." (Manuel Castells, "The Rise of the Network Society", 1996)

"These, then, are some of the basic principles of ecology - interdependence, recycling, partnership, flexibility, diversity, and, as a consequence of all those, sustainability... the survival of humanity will depend on our ecological literacy, on our ability to understand these principles of ecology and live accordingly.(Fritjof Capra, "The Web of Life", 1996)

"Delay time, the time between causes and their impacts, can highly influence systems. Yet the concept of delayed effect is often missed in our impatient society, and when it is recognized, it’s almost always underestimated. Such oversight and devaluation can lead to poor decision making as well as poor problem solving, for decisions often have consequences that don’t show up until years later. Fortunately, mind mapping, fishbone diagrams, and creativity/brainstorming tools can be quite useful here." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"[...] synergy is the consequence of the energy expended in creating order. It is locked up in the viable system created, be it an organism or a social system. It is at the level of the system. It is not discernible at the level of the system. It is not discernible at the level of the system’s components. Whenever the system is dismembered to examine its components, this binding energy dissipates." (J-C Spender, "Organizational Knowledge, Collective Practice and Penrose Rents", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes." (John A Adam, "Mathematics in Nature", 2003)

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed" (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control", Reviews of Modern Physics Vol. 77, 2005)

"In short, synergy is the consequence of the energy expended in creating order. It is locked up in the viable system created, be it an organism or a social system. It is at the level of the system. It is not discernible at the level of the system. It is not discernible at the level of the system's components. Whenever the system is dismembered to examine its components, this binding energy dissipates." (J-C Spender, "Organizational Knowledge, Collective Practice and Penrose Rents", 2009)

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems." (Albert-László Barabási, "Network Science", 2016)


Related Posts Plugin for WordPress, Blogger...