24 December 2025

❄️Systems Thinking: On Systemic Analysis(Quotes)

"As the analysis of a substantial composite terminates only in a part which is not a whole, that is, in a simple part, so synthesis terminates only in a whole which is not a part, that is, the world." (Immanuel Kant, "Inaugural Dissertation", 1770)

"It is interesting thus to follow the intellectual truths of analysis in the phenomena of nature. This correspondence, of which the system of the world will offer us numerous examples, makes one of the greatest charms attached to mathematical speculations." (Pierre-Simon Laplace, "Exposition du système du monde", 1799)

"SYSTEM (to place together) - is a full and connected view of all the truths of some department of knowledge. An organized body of truth, or truths arranged under one and the same idea, which idea is as the life or soul which assimilates all those truths. No truth is altogether isolated. Every truth has relation to some other. And we should try to unite the facts of our knowledge so as to see them in their several bearings. This we do when we frame them into a system. To do so legitimately we must begin by analysis and end with synthesis. But system applies not only to our knowledge, but to the objects of our knowledge. Thus we speak of the planetary system, the muscular system, the nervous system. We believe that the order to which we would reduce our ideas has a foundation in the nature of things. And it is this belief that encourages us to reduce our knowledge of things into systematic order. The doing so is attended with many advantages. At the same time a spirit of systematizing may be carried too far. It is only in so far as it is in accordance with the order of nature that it can be useful or sound." (William Fleming, "Vocabulary of philosophy, mental, moral, and metaphysical; with quotations and references; for the use of students", 1857)

"The whole of the developments and operations of analysis are now capable of being executed by machinery. […] As soon as an Analytical Engine exists, it will necessarily guide the future course of science." (Charles Babbage, "Passages from the Life of a Philosopher", 1864)

"The analysis of Nature into its individual parts, the grouping of the different natural processes and natural objects in definite classes, the study of the internal anatomy of organic bodies in their manifold forms - these were the fundamental conditions of the gigantic strides in our knowledge of Nature which have been made during the last four hundred years. But this method of investigation has also left us as a legacy the habit of observing natural objects and natural processes in their isolation, detached from the whole vast interconnection of things; and therefore not in their motion, but in their repose; not as essentially changing, but fixed constants; not in their life, but in their death." (Friedrich Engels, "Herr Eugen Dühring's Revolution in Science", 1878)

"After this first approximation, the various aspects of the situation undergo a more and more detailed analysis. In contrast to this the second method [for analysis of life space] begins with the life space as a whole and defines its fundamental structure. The procedure in this case is not to add disconnected items but to make the original structure more specific and differentiated. This method therefore proceeds by steps from the more general to the particular and thereby avoids the danger of a wrong simplification" by abstraction." (Kurt Lewin, "Principles of topological psychology", 1936)

"Analysis shows that closed systems cannot behave equifinally. This is the reason why equifinality is found in inanimate nature only in exceptional cases. However, in open systems, which are exchanging materials with the environment, in so far as they attain a steady state, the latter is independent of the initial conditions, or is equifinal.[...] Steady state systems show equifinality, in sharp contrast to closed systems in equilibrium where the final state depends on the components given at the beginning of the process." (Ludwig von Bertalanffy, "The Theory of Open Systems in Physics and Biology", Science Vol. 111, 1950)

"The analysis of engineering systems and the understanding of economic structure have advanced since then, and the time is now more ripe to bring these topics into a potentially fruitful marriage." (Arnold Tustin, "The Mechanism of Economic Systems", 1953)

"An engineering science aims to organize the design principles used in engineering practice into a discipline and thus to exhibit the similarities between different areas of engineering practice and to emphasize the power of fundamental concepts. In short, an engineering science is predominated by theoretical analysis and very often uses the tool of advanced mathematics." (Qian Xuesen, "Engineering cybernetics", 1954)

"The term 'systems engineering' is a term with an air of romance and of mystery. The romance and the mystery come from its use in the field of guided missiles, rockets, artificial satellites, and space flight. Much of the work being done in these areas is classified and hence much of it is not known to the general public or to this writer. […] From a business point of view, systems engineering is the creation of a deliberate combination of human services, material services, and machine service to accomplish an information processing job. But this is also very nearly a definition of business system analysis. The difference, from a business point of view, therefore, between business system analysis and systems engineering is only one of degree. In general, systems engineering is more total and more goal-oriented in its approach [...]." ("Computers and People" Vol. 5, 1956)

"There are two types of systems engineering - basis and applied. [...] Systems engineering is, obviously, the engineering of a system. It usually, but not always, includes dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, optimating, etc., etc. It connotes an optimum method, realized by modern engineering techniques. Basic systems engineering includes not only the control system but also all equipment within the system, including all host equipment for the control system. Applications engineering is - and always has been - all the engineering required to apply the hardware of a hardware manufacturer to the needs of the customer. Such applications engineering may include, and always has included where needed, dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, and any technique needed to meet the end purpose - the fitting of an existing line of production hardware to a customer's needs. This is applied systems engineering." (Instruments and Control Systems Vol. 31, 1958

"In a general way it may be said that to think in terms of systems seems the most appropriate conceptual response so far available when the phenomena under study - at any level and in any domain - display the character of being organized, and when understanding the nature of the interdependencies constitutes the research task. In the behavioral sciences, the first steps in building a systems theory were taken in connection with the analysis of internal processes in organisms, or organizations, when the parts had to be related to the whole." (Fred Emery, "The Causal Texture of Organizational Environments", 1963)

"Foundations and organization are similar in that both provide some sort of more systematic exposition. But a step in this direction may be crucial for organization, yet foundationally trivial, for instance a new choice of language when (i) old theorems are simpler to state but (ii) the primitive notions of the new language are defined in terms of the old, that is if they are logically dependent on the latter. Quite often, (i) will be achieved by using new notions with more ‘structure’, that is less analyzed notions, which is a step in the opposite direction to a foundational analysis. In short, foundational and organizational aims are liable to be actually contradictory." (Georg Kreisel & Jean-Louis Krivine, "Elements of Mathematical Logic: Model Theory", 1967)

"General systems theory (in the narrow sense of the term) is a discipline concerned with the general properties and laws of 'systems' . A system is defined as a complex of components in interaction, or by some similar proposition. Systems theory tries to develop those principles that apply to systems in general, irrespective of the nature of the system, of their components, and of the relations or 'forces' between them. The system components need not even be material, as, for example, in the system analysis of a commercial enterprise where components such as buildings, machines, personnel, money and 'good will' of customers enter." (Ludwig von Bertalanffy, "Robots, Men and Minds", 1967

"In the minds of many writers systems engineering is synonomous with component selection and interface design; that is, the systems engineer does not design hardware but decides what types of existing hardware shall be coupled and how they shall be coupled. Complete agreement that this function is the essence of systems engineering will not be found here, for, besides the very important function of systems engineering in systems analysis, there is the role played by systems engineering in providing boundary conditions for hardware design." (A Wayne Wymore, "A Mathematical Theory of Systems Engineering", 1967

"Now we are looking for another basic outlook on the world - the world as organization. Such a conception - if it can be substantiated - would indeed change the basic categories upon which scientific thought rests, and profoundly influence practical attitudes. This trend is marked by the emergence of a bundle of new disciplines such as cybernetics, information theory, general system theory, theories of games, of decisions, of queuing and others; in practical applications, systems analysis, systems engineering, operations research, etc. They are different in basic assumptions, mathematical techniques and aims, and they are often unsatisfactory and sometimes contradictory. They agree, however, in being concerned, in one way or another, with ‘systems’, ‘wholes’ or ‘organizations’; and in their totality, they herald a new approach." (Ludwig von Bertalanffy, "General System Theory", 1968)"

"In the selection of papers for this volume, two problems have arisen, namely what constitutes systems thinking and what systems thinking is relevant to the thinking required for organizational management. The first problem is obviously critical. Unless there were a meaningful answer there would be no sense in producing a volume of readings in systems thinking in any subject. A great many writers have manifestly believed that there is a way of considering phenomena which is sufficiently different from the well-established modes of scientific analysis to deserve the particular title of systems thinking." (Frederick E Emery" (ed.),"Systems thinking: selected readings", 1969

"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)

"The notion of ‘system’ has gained central importance in contemporary science, society and life. In many fields of endeavor, the necessity of a ‘systems approach’ or ‘systems thinking’ is emphasized, new professions called ‘systems engineering’, ‘systems analysis’ and the like have come into being, and there can be little doubt that this this concept marks a genuine, necessary, and consequential development in science and world-view." (Ervin László,"Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought", 1972)

"System theory is a tool which engineers use to help them design the 'best' system to do the job that must be done. A dominant characteristic of system theory is the interest in the analysis and design (synthesis) of systems from an input-output point of view. System theory uses mathematical manipulation of a mathematical model to help design the actual system." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"In our analysis of complex systems (like the brain and language) we must avoid the trap of trying to find master keys. Because of the mechanisms by which complex systems structure themselves, single principles provide inadequate descriptions. We should rather be sensitive to complex and self-organizing interactions and appreciate the play of patterns that perpetually transforms the system itself as well as the environment in which it operates." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems" , 1998)

"Analysis of a system reveals its structure and how it works. It provides the knowledge required to make it work efficiently and to repair it when it stops working. Its product is know-how, knowledge, not understanding. To enable a system to perform effectively we must understand it - we must be able to explain its behavior - and this requires being aware of its functions in the larger systems of which it is a part." (Russell L Ackoff, "Re-Creating the Corporation", 1999

"Conventional mathematics and control theory exclude vagueness and contradictory conditions. As a consequence, conventional control systems theory does not attempt to study any formulation, analysis, and control of what has been called fuzzy systems, which may be vague, incomplete, linguistically described, or even inconsistent." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001))

"One of the factors that distinguishes engineering from science is that the engineer builds complex systems from simple bits, whereas the scientist breaks complex systems into hopefully comprehensible components. The first is called understanding by synthesis and the second is understanding by analysis." (Igor Aleksander, "How to Build a Mind: toward machines with imagination", 2001)

"Systems thinking expands the focus of the observer, whereas analytical thinking reduces it. In other words, analysis looks into things, synthesis looks out of them. This attitude of systems thinking is often called expansionism, an alternative to classic reductionism. Whereas analytical thinking concentrates on static and structural properties, systems thinking concentrates on the function and behaviour of whole systems. Analysis gives description and knowledge; systems thinking gives explanation and understanding." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Systems thinking, in contrast, focuses on how the thing being studied interacts with the other constituents of the system - a set of elements that interact to produce behaviour - of which it is a part. This means that instead of isolating smaller and smaller parts of the system being studied, systems thinking works by expanding its view to take into account larger and larger numbers of interactions as an issue is being studied. This results in sometimes strikingly different conclusions than those generated by traditional forms of analysis, especially when what is being studied is dynamically complex or has a great deal of feedback from other sources, internal or external. Systems thinking allows people to make their understanding of social systems explicit and improve them in the same way that people can use engineering principles to make explicit and improve their understanding of mechanical systems." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics" [in "Handbook of Research on Discrete Event Simulation Environments: Technologies and Applications"], 2010)

"Understanding interdependency requires a way of thinking different from analysis. It requires systems thinking. And analytical thinking and systems thinking are quite distinct. [...] Systems thinking is the art of simplifying complexity. It is about seeing through chaos, managing interdependency, and understanding choice. We see the world as increasingly more complex and chaotic because we use inadequate concepts to explain it. When we understand something, we no longer see it as chaotic or complex." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture", 2011) 

"Catastrophe theory can be thought of as a link between classical analysis, dynamical systems, differential topology (including singularity theory), modern bifurcation theory and the theory of complex systems. [...] The name ‘catastrophe theory’ is used for a combination of singularity theory and its applications. [...] From the didactical point of view, there are two main positions for courses in catastrophe theory at university level: Trying to teach the theory as a perfect axiomatic system consisting of exact definitions, theorems and proofs or trying to teach mathematics as it can be developed from historical or from natural problems." (Werner Sanns, "Catastrophe Theory" [Mathematics of Complexity and Dynamical Systems, 2012]

"A model is a simplified representation of a system. It can be conceptual, verbal, diagrammatic, physical, or formal (mathematical)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"A network (or graph) consists of a set of nodes" (or vertices, actors) and a set of edges" (or links, ties) that connect those nodes. [...] The size of a network is characterized by the numbers of nodes and edges in it." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Chaos can be understood as a dynamical process in which microscopic information hidden in the details of a system’s state is dug out and expanded to a macroscopically visible scale" (stretching), while the macroscopic information visible in the current system’s state is continuously discarded" (folding)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Dynamics of a linear system are decomposable into multiple independent one-dimensional exponential dynamics, each of which takes place along the direction given by an eigenvector. A general trajectory from an arbitrary initial condition can be obtained by a simple linear superposition of those independent dynamics." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Emergence is a nontrivial relationship between the properties of a system at microscopic and macroscopic scales. Macroscopic properties are called emergent when it is hard to explain them simply from microscopic properties." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015

"Self-organization is a dynamical process by which a system spontaneously forms nontrivial macroscopic structures and/or behaviors over time." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"The work around the complex systems map supported a concentration on causal mechanisms. This enabled poor system responses to be diagnosed as the unanticipated effects of previous policies as well as identification of the drivers of the sector. Understanding the feedback mechanisms in play then allowed experimentation with possible future policies and the creation of a coherent and mutually supporting package of recommendations for change. " (David C Lane et al, "Blending systems thinking approaches for organisational analysis: reviewing child protection", 2015)

19 December 2025

❄️Systems Thinking: On Dimensions (Quotes)

"A fairly general procedure for mathematical study of a physical system with explication of the space of states of that system. Now this space of states could reasonably be one of a number of mathematical objects. However, in my mind, a principal candidate for the state space should be a differentiable manifold; and in case the has a finite number of degrees of freedom, then this will be a finite dimensional manifold. Usually associated with physical is the notion of how a state progresses in time. The corresponding object is a dynamical system or a first order ordinary differential equation on the manifold of states." (Stephen Smale, "Personal perspectives on mathematics and mechanics", 1971)

"The structure of a system is the arrangement of its subsystems and components in three-dimensional space at a given moment of time. This always changes over time. It may remain relatively fixed for a long period or it may change from moment to moment, depending upon the characteristics of the process in the system. This process halted at any given moment, as when motion is frozen by a high-speed photograph, reveals the three-dimensional spatial arrangement of the system's components as of that instant." (James G Miller, "Living systems", 1978)

"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"[…] physicists have come to appreciate a fourth kind of temporal behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct from the latter because it is the result of deterministic equations. In dynamic systems such chaos is often characterized by small fractal dimensions because a chaotic process in phase space typically fills only a small part of the entire, energetically available space." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder" (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"What is an attractor? It is the set on which the point P, representing the system of interest, is moving at large times (i.e., after so-called transients have died out). For this definition to make sense it is important that the external forces acting on the system be time independent" (otherwise we could get the point P to move in any way we like). It is also important that we consider dissipative systems (viscous fluids dissipate energy by self-friction). Dissipation is the reason why transients die out. Dissipation is the reason why, in the infinite-dimensional space representing the system, only a small set" (the attractor) is really interesting." (David Ruelle, "Chance and Chaos", 1991)

"An attractor that consists of an infinite number of curves, surfaces, or higher-dimensional manifolds - generalizations of surfaces to multidimensional space - often occurring in parallel sets, with a gap between any two members of the set, is called a strange attractor." (Edward N Lorenz, "The Essence of Chaos", 1993)

"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract" (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting. " (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques can not easily handle the problem." (M Jamshidi, "Autonomous Control on Complex Systems: Robotic Applications", Current Advances in Mechanical Design and Production VII, 2000)

"Science reveals complexity unfolding in all dimensions and novel features emerging at all scales and organizational levels of the universe. The more we know the more we become aware of how much we do not know. […] Complexity itself is understood as a particular dynamic or 'movement' in time that is simultaneously stable and unstable, predictable and unpredictable, known and unknown, certain and uncertain." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"In a chaotic system, there must be stretching to cause the exponential separation of initial conditions but also folding to keep the trajectories from moving off to infinity. The folding requires that the equations of motion contain at least one nonlinearity, leading to the important principle that chaos is a property unique to nonlinear dynamical systems. If a system of equations has only linear terms, it cannot exhibit chaos no matter how complicated or high-dimensional it may be." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Systems with dimension greater than four begin to lose their elegance unless they possess some kind of symmetry that reduces the number of parameters. One such symmetry has the variables arranged in a ring of many identical elements, each connected to its neighbors in an identical fashion. The symmetry of the equations is often broken in the solutions, giving rise to spatiotemporal chaotic patterns that are elegant in their own right." (Julien C Sprott, "Elegant Chaos: Algebraically Simple Chaotic Flows", 2010)

"Dynamics of a linear system are decomposable into multiple independent one-dimensional exponential dynamics, each of which takes place along the direction given by an eigenvector. A general trajectory from an arbitrary initial condition can be obtained by a simple linear superposition of those independent dynamics." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

13 December 2025

❄️Systems Thinking: On Self-Similarity (Quotes)

 "[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"All physical objects that are 'self-similar' have limited self-similarity - just as there are no perfectly periodic functions, in the mathematical sense, in the real world: most oscillations have a beginning and an end (with the possible exception of our universe, if it is closed and begins a new life cycle after every 'big crunch' […]. Nevertheless, self-similarity is a useful  abstraction, just as periodicity is one of the most useful concepts in the sciences, any finite extent notwithstanding." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Percolation is a widespread paradigm. Percolation theory can therefore illuminate a great many seemingly diverse situations. Because of its basically geometric character, it facilitates the analysis of intricate patterns and textures without needless physical complications. And the self-similarity that prevails at critical points permits profitably mining the connection with scaling and fractals." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] power laws, with integer or fractional exponents, are one of the most fertile fields and abundant sources of self-similarity." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The only prerequisite for a self-similar law to prevail in a given size range is the absence of an inherent size scale." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic" (that is fixed) rules" (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order" (a pattern) within disorder" (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos appears in both dissipative and conservative systems, but there is a difference in its structure in the two types of systems. Conservative systems have no attractors. Initial conditions can give rise to periodic, quasiperiodic, or chaotic motion, but the chaotic motion, unlike that associated with dissipative systems, is not self-similar. In other words, if you magnify it, it does not give smaller copies of itself. A system that does exhibit self-similarity is called fractal. [...] The chaotic orbits in conservative systems are not fractal; they visit all regions of certain small sections of the phase space, and completely avoid other regions. If you magnify a region of the space, it is not self-similar." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"What is renormalization? First of all, if scaling is present we can go to smaller scales and get exactly the same result. In a sense we are looking at the system with a microscope of increasing power. If you take the limit of such a process you get a stability that is not otherwise present. In short, in the renormalized system, the self-similarity is exact, not approximate as it usually is. So renormalization gives stability and exactness." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder. " (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The self-similarity on different scales arises because growth often involves iteration of simple, discrete processes (e.g. branching). These repetitive processes can often be summarized as sets of simple rules." (David G Green, 2000)

"Fractals are self-similar objects. However, not every self-similar object is a fractal, with a scale-free form distribution. If we put identical cubes on top of each other, we get a self-similar object. However, this object will not have scale-free statistics: since it has only one measure of rectangular forms, it is single-scaled. We need a growing number of smaller and smaller self-similar objects to satisfy the scale-free distribution." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"The concept of bifurcation, present in the context of non-linear dynamic systems and theory of chaos, refers to the transition between two dynamic modalities qualitatively distinct; both of them are exhibited by the same dynamic system, and the transition (bifurcation) is promoted by the change in value of a relevant numeric parameter of such system. Such parameter is named 'bifurcation parameter', and in highly non-linear dynamic systems, its change can produce a large number of bifurcations between distinct dynamic modalities, with self-similarity and fractal structure. In many of these systems, we have a cascade of numberless bifurcations, culminating with the production of chaotic dynamics." (Emilio Del-Moral-Hernandez, "Chaotic Neural Networks", Encyclopedia of Artificial Intelligence, 2009)

"In the telephone system a century ago, messages dispersed across the network in a pattern that mathematicians associate with randomness. But in the last decade, the flow of bits has become statistically more similar to the patterns found in self-organized systems. For one thing, the global network exhibits self-similarity, also known as a fractal pattern. We see this kind of fractal pattern in the way the jagged outline of tree branches look similar no matter whether we look at them up close or far away. Today messages disperse through the global telecommunications system in the fractal pattern of self-organization." (Kevin Kelly, "What Technology Wants", 2010)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

"Laws of complexity hold universally across hierarchical scales (scalar, self-similarity) and are not influenced by the detailed behavior of constituent parts." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Fractals are different from chaos. Fractals are self-similar geometric objects, while chaos is a type of deterministic yet unpredictable dynamical behavior. Nevertheless, the two ideas or areas of study have several interesting and important links. Fractal objects at first blush seem intricate and complex. However, they are often the product of very simple dynamical systems. So the two areas of study - chaos and fractals - are naturally paired, even though they are distinct concepts." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)

"The study of chaos shows that simple systems can exhibit complex and unpredictable behavior. This realization both suggests limits on our ability to predict certain phenomena and that complex behavior may have a simple explanation. Fractals give scientists a simple and concise way to qualitatively and quantitatively understand self-similar objects or phenomena. More generally, the study of chaos and fractals hold many fun surprises; it challenges one’s intuition about simplicity and complexity, order and disorder." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012

"Chaos theory is a branch of mathematics focusing on the study of chaos - dynamical systems whose random states of disorder and irregularities are governed by underlying patterns and deterministic laws that are highly sensitive to initial conditions. Chaos theory is an interdisciplinary theory stating that, within the apparent randomness of complex, chaotic systems, there are underlying patterns, interconnectedness, constant feedback loops, repetition, self-similarity, fractals, and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state (meaning that there is a sensitive dependence on initial conditions)." (Nima Norouzi, "Criminal Policy, Security, and Justice in the Time of COVID-19", 2022)

06 December 2025

❄️Systems Thinking: On Thresholds (Quotes)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25" (11), 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"In the realms of nature it is impossible to predict which way a bifurcation will cut. The outcome of a bifurcation is determined neither by the past history of a system nor by its environment, but only by the interplay of more or less random fluctuations in the chaos of critical destabilization. One or another of the fluctuations that rock such a system will suddenly 'nucleate'. The nucleating fluctuation will amplify with great rapidity and spread to the rest of the system. In a surprisingly short time, it dominates the system’s dynamics. The new order that is then born from the womb of chaos reflects the structural and functional characteristics of the nucleated fluctuation. [...] Bifurcations are more visible, more frequent, and more dramatic when the systems that exhibit them are close to their thresholds of stability - when they are all but choked out of existence." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"When a system is 'stressed' beyond certain threshold limits as, for example, when it is heated up, or its pressure is increased, it shifts from one set of attractors to another and then behaves differently. To use the language of the theory, the system 'settles into a new dynamic regime'. It is at the point of transition that a bifurcation takes place. The system no longer follows the trajectory of its initial attractors, but responds to new attractors that make the system appear to be behaving randomly. It is not behaving randomly, however, and this is the big shift in our understanding caused by dynamical systems theory. It is merely responding to a new set of attractors that give it a more complex trajectory. The term bifurcation, in its most significant sense, refers to the transition of a system from the dynamic regime of one set of attractors, generally more stable and simpler ones, to the dynamic regime of a set of more complex and 'chaotic' attractors." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"In the case of a complex system, nonlinear behavior can happen as disturbances or changes in the system, each one relatively small by itself, accumulate. Outwardly, everything seems to be normal: the system doesn’t generate any surprises. At some point, though, the behavior of the whole system suddenly shifts to a radically new mode. This kind of behavior is often called a threshold effect, because the shift occurs when a critical threshold - usually unseen and often unexpected - is crossed." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

"Creative elements add random elements to network behavior, inducing an increase in noise. This is highly beneficial to a certain extent as we saw in the previous box, but becomes intolerable if it exceeds a certain threshold. This threshold is high if the hosting network lives an individual life and often meets unexpected situations. However, the same threshold becomes low if the hosting network is part of a higher level organization which provides a stable environment." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary" (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Flaws can be found in any research design if you look hard enough. […] In our experience, it is good scientific practice to refine one's research hypotheses in light of the data. Working scientists are also keenly aware of the risks of data dredging, and they use confidence intervals and p-values as a tool to avoid getting fooled by noise. Unfortunately, a by-product of all this struggle and care is that when a statistically significant pattern does show up, it is natural to get excited and believe it. The very fact that scientists generally don't cheat, generally don't go fishing for statistical significance, makes them vulnerable to drawing strong conclusions when they encounter a pattern that is robust enough to cross the p < 0.05 threshold." (Andrew Gelman & Eric Loken, "The Statistical Crisis in Science", American Scientist Vol. 102(6), 2014)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Bifurcation is a qualitative, topological change of a system’s phase space that occurs when some parameters are slightly varied across their critical thresholds. Bifurcations play important roles in many real-world systems as a switching mechanism. […] There are two categories of bifurcations. One is called a local bifurcation, which can be characterized by a change in the stability of equilibrium points. It is called local because it can be detected and analyzed only by using localized information around the equilibrium point. The other category is called a global bifurcation, which occurs when non-local features of the phase space, such as limit cycles (to be discussed later), collide with equilibrium points in a phase space. This type of bifurcation can’t be characterized just by using localized information around the equilibrium point."  (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

Related Posts Plugin for WordPress, Blogger...