24 August 2025

❄️Systems Thinking: On Parameters (Quotes)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, Evolutionary Economics, 1981)

"A conceptual model is a qualitative description of the system and includes the processes taking place in the system, the parameters chosen to describe the processes, and the spatial and temporal scales of the processes." (A Avogadro & R C Ragaini, "Technologies for Environmental Cleanup", 1993)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting."  (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. [...] In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. [...] In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined." (Usama Fayyad et al, "Information Visualization in Data Mining and Knowledge Discovery", 2002)

"The existence of equilibria or steady periodic solutions is not sufficient to determine if a system will actually behave that way. The stability of these solutions must also be checked. As parameters are changed, a stable motion can become unstable and new solutions may appear. The study of the changes in the dynamic behavior of systems as parameters are varied is the subject of bifurcation theory. Values of the parameters at which the qualitative or topological nature of the motion changes are known as critical or bifurcation values." (Francis C Moona, "Nonlinear Dynamics", 2003)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Generally, these programs fall within the techniques of reinforcement learning and the majority use an algorithm of temporal difference learning. In essence, this computer learning paradigm approximates the future state of the system as a function of the present state. To reach that future state, it uses a neural network that changes the weight of its parameters as it learns." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Principle of Equifinality: If a steady state is reached in an open system, it is independent of the initial conditions, and determined only by the system parameters, i.e. rates of reaction and transport." (Kevin Adams & Charles Keating, "Systems of systems engineering", 2012)

"One kind of probability - classic probability - is based on the idea of symmetry and equal likelihood […] In the classic case, we know the parameters of the system and thus can calculate the probabilities for the events each system will generate. […] A second kind of probability arises because in daily life we often want to know something about the likelihood of other events occurring […]. In this second case, we need to estimate the parameters of the system because we don’t know what those parameters are. […] A third kind of probability differs from these first two because it’s not obtained from an experiment or a replicable event - rather, it expresses an opinion or degree of belief about how likely a particular event is to occur. This is called subjective probability […]." (Daniel J Levitin, "Weaponized Lies", 2017)

23 August 2025

❄️Systems Thinking: On Goals (Quotes)

"Linking the basic parts are communication, balance or system parts maintained in harmonious relationship with each other and decision making. The system theory include both man-machine and interpersonal relationships. Goals, man, machine, method, and process are woven together into a dynamic unity which reacts." (George R Terry, "Principles of Management", 1960)

"[System dynamics] is an approach that should help in important top-management problems [...] The solutions to small problems yield small rewards. Very often the most important problems are but little more difficult to handle than the unimportant. Many [people] predetermine mediocre results by setting initial goals too low. The attitude must be one of enterprise design. The expectation should be for major improvement [...] The attitude that the goal is to explain behavior; which is fairly common in academic circles, is not sufficient. The goal should be to find management policies and organizational structures that lead to greater success." (Jay W Forrester, "Industrial Dynamics", 1961)

"Most of our beliefs about complex organizations follow from one or the other of two distinct strategies. The closed-system strategy seeks certainty by incorporating only those variables positively associated with goal achievement and subjecting them to a monolithic control network. The open-system strategy shifts attention from goal achievement to survival and incorporates uncertainty by recognizing organizational interdependence with environment. A newer tradition enables us to conceive of the organization as an open system, indeterminate and faced with uncertainty, but subject to criteria of rationality and hence needing certainty." (James D Thompson, "Organizations in Action", 1967)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"General systems theory is the scientific exploration of 'wholes' and 'wholeness' which, not so long ago, were considered metaphysical notions transcending the boundaries of science. Hierarchic structure, stability, teleology, differentiation, approach to and maintenance of steady states, goal-directedness - these are a few of such general system properties." (Ervin László, "Introduction to Systems Philosophy", 1972)

"At the very least (there is certainly more), cybernetics implies a new philosophy about (1) what we can know, (2) about what it means for something to exist, and (3) about how to get things done. Cybernetics implies that knowledge is to be built up through effective goal-seeking processes, and perhaps not necessarily in uncovering timeless, absolute, attributes of things, irrespective of our purposes and needs." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"Cybernetics is a science of purposeful behavior. It helps us explain behavior as the continuous action of someone (or thing) in the process, as we see it, of maintaining certain conditions near a goal state, or purpose." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"System engineering is a robust approach to the design, creation, and operation of systems. In simple terms, the approach consists of identification and quantification of system goals, creation of alternative system design concepts, performance of design trades, selection and implementation of the best design, verification that the design is properly built and integrated, and post-implementation assessment of how well the system meets (or met) the goals." (NASA, "NASA Systems Engineering Handbook", 1995) 

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Just as dynamics arise from feedback, so too all learning depends on feedback. We make decisions that alter the real world; we gather information feedback about the real world, and using the new information we revise our understanding of the world and the decisions we make to bring our perception of the state of the system closer to our goals." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"The manager [...] is understood as one who observes the causal structure of an organization in order to be able to control it [...] This is taken to mean that the manager can choose the goals of the organization and design the systems or actions to realize those goals [...]. The possibility of so choosing goals and strategies relies on the predictability provided by the efficient and formative causal structure of the organization, as does the possibility of managers staying 'in control' of their organization's development. According to this perspective, organizations become what they are because of the choices made by their managers." (Ralph D Stacey et al, "Complexity and Management: Fad or Radical Challenge to Systems Thinking?", 2000)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

17 August 2025

❄️Systems Thinking: On Randomness (Quotes)

"How can deterministic behavior look random? If truly identical states do occur on two or more occasions, it is unlikely that the identical states that will necessarily follow will be perceived as being appreciably different. What can readily happen instead is that almost, but not quite, identical states occurring on two occasions will appear to be just alike, while the states that follow, which need not be even nearly alike, will be observably different. In fact, in some dynamical systems it is normal for two almost identical states to be followed, after a sufficient time lapse, by two states bearing no more resemblance than two states chosen at random from a long sequence. Systems in which this is the case are said to be sensitively dependent on initial conditions. With a few more qualifications, to be considered presently, sensitive dependence can serve as an acceptable definition of chaos [...]" (Edward N Lorenz, "The Essence of Chaos", 1993)

"Systems that vary deterministically as time progresses, such as mathematical models of the swinging pendulum, the rolling rock, and the breaking wave, and also systems that vary with an inconsequential amount of randomness - possibly a real pendulum, rock, or wave - are technically known as dynamical systems." (Edward N Lorenz, "The Essence of Chaos", 1993)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"When some systems are stuck in a dangerous impasse, randomness and only randomness can unlock them and set them free." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

More quotes on "Randomness" at the-web-of-knowledge.blogspot.com

16 August 2025

❄️Systems Thinking: On Interconnectedness (Quotes)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure", 1951)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 1979)

"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella Meadows,"Whole Earth Models and Systems", 1982)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"The more complex the network is, the more complex its pattern of interconnections, the more resilient it will be." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"A system is an interconnected set of elements that is coherently organized in a way that achieves something." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013) 

10 August 2025

❄️Systems Thinking: On Information Processing (Quotes)

"The term 'systems engineering' is a term with an air of romance and of mystery. The romance and the mystery come from its use in the field of guided missiles, rockets, artificial satellites, and space flight. Much of the work being done in these areas is classified and hence much of it is not known to the general public or to this writer. […] From a business point of view, systems engineering is the creation of a deliberate combination of human services, material services, and machine service to accomplish an information processing job. But this is also very nearly a definition of business system analysis. The difference, from a business point of view, therefore, between business system analysis and systems engineering is only one of degree. In general, systems engineering is more total and more goal-oriented in its approach [...]." ("Computers and People" Vol. 5, 1956)

"Cybernetics is the science of the process of transmission, processing and storage of information." (Sergei Sobolew, Woprosy Psychology, 1958)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The great difference between the graphic representation of yesterday, which was poorly dissociated from the figurative image, and the graphics of tomorrow, is the disappearance of the congential fixity of the image. […] When one can superimpose, juxtapose, transpose, and permute graphic images in ways that lead to groupings and classings, the graphic image passes from the dead image, the 'illustration,' to the living image, the widely accessible research instrument it is now becoming. The graphic is no longer only the 'representation' of a final simplification, it is a point of departure for the discovery of these simplifications and the means for their justification. The graphic has become, by its manageability, an instrument for information processing." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"The greater the uncertainty, the greater the amount of decision making and information processing. It is hypothesized that organizations have limited capacities to process information and adopt different organizing modes to deal with task uncertainty. Therefore, variations in organizing modes are actually variations in the capacity of organizations to process information and make decisions about events which cannot be anticipated in advance." (John K Galbraith, "Organization Design", 1977)

"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Cybernetics is concerned with scientific investigation of systemic processes of a highly varied nature, including such phenomena as regulation, information processing, information storage, adaptation, self-organization, self-reproduction, and strategic behavior. Within the general cybernetic approach, the following theoretical fields have developed: systems theory (system), communication theory, game theory, and decision theory." (Fritz B Simon et al, "Language of Family Therapy: A Systemic Vocabulary and Source Book", 1985)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"Reliable information processing requires the existence of a good code or language, i.e., a set of rules that generate information at a given hierarchical level, and then compress it for use at a higher cognitive level. To accomplish this, a language should strike an optimum balance between variety (stochasticity) and the ability to detect and correct errors (memory)."(John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: (1) Information processing occurs at many simple elements called neurons. (2) Signals are passed between neurons over connection links. (3) Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. (4) Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"In spite of the insurmountable computational limits, we continue to pursue the many problems that possess the characteristics of organized complexity. These problems are too important for our well being to give up on them. The main challenge in pursuing these problems narrows down fundamentally to one question: how to deal with systems and associated problems whose complexities are beyond our information processing limits? That is, how can we deal with these problems if no computational power alone is sufficient?"  (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"It is not only a metaphor to transform the Internet to a superbrain with self-organizing features of learning and adapting. Information retrieval is already realized by neural networks adapting to the information preferences of a human user with synaptic plasticity. In sociobiology, we can 1 earn from populations of ants and termites how to organize traffic and information processing by swarm intelligence. From a technical point of view, we need intelligent programs distributed in the nets. There are already more or less intelligent virtual organisms {'agents'), learning, self-organizing and adapting to our individual preferences of information, to select our e-mails, to prepare economic transactions or to defend the attacks of hostile computer viruses, like the immune system of our body." (Klaus Mainzer, "Complexity Management in the Age of Globalization", 2006)

"An artificial neural network, often just called a 'neural network' (NN), is an interconnected group of artificial neurons that uses a mathematical model or computational model for information processing based on a connectionist approach to computation. Knowledge is acquired by the network from its environment through a learning process, and interneuron connection strengths (synaptic weighs) are used to store the acquired knowledge." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", 2009)

"Many AI systems employ heuristic decision making, which uses a strategy to find the most likely correct decision to avoid the high cost (time) of processing lots of information. We can think of those heuristics as shortcuts or rules of thumb that we would use to make fast decisions." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

09 August 2025

❄️Systems Thinking: On Action (Quotes)

"The 'cybernetics' of Wiener […] is the science of organization of mechanical and electrical components for stability and purposeful actions. A distinguishing feature of this new science is the total absence of considerations of energy, heat, and efficiency, which are so important in other natural sciences. In fact, the primary concern of cybernetics is on the qualitative aspects of the interrelations among the various components of a system and the synthetic behavior of the complete mechanism." (Qian Xuesen, "Engineering Cybernetics", 1954) 

"[Cybernetics is] the art of ensuring the efficacy of action." (Louis Couffignal, 1958)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"A system may be specified in either of two ways. In the first, which we shall call a state description, sets of abstract inputs, outputs and states are given, together with the action of the inputs on the states and the assignments of outputs to states. In the second, which we shall call a coordinate description, certain input, output and state variables are given, together with a system of dynamical equations describing the relations among the variables as functions of time. Modern mathematical system theory is formulated in terms of state descriptions, whereas the classical formulation is typically a coordinate description, for example a system of differential equations." (E S Bainbridge, "The Fundamental Duality of System Theory", 1975)

"An internal model allows a system to look ahead to the future consequences of current actions, without actually committing itself to those actions. In particular, the system can avoid acts that would set it irretrievably down some road to future disaster ('stepping off a cliff'). Less dramatically, but equally important, the model enables the agent to make current 'stage-setting' moves that set up later moves that are obviously advantageous. The very essence of a competitive advantage, whether it be in chess or economics, is the discovery and execution of stage-setting moves." (John H Holland, 1992)

"At the other far extreme, we find many systems ordered as a patchwork of parallel operations, very much as in the neural network of a brain or in a colony of ants. Action in these systems proceeds in a messy cascade of interdependent events. Instead of the discrete ticks of cause and effect that run a clock, a thousand clock springs try to simultaneously run a parallel system. Since there is no chain of command, the particular action of any single spring diffuses into the whole, making it easier for the sum of the whole to overwhelm the parts of the whole. What emerges from the collective is not a series of critical individual actions but a multitude of simultaneous actions whose collective pattern is far more important. This is the swarm model." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"Systems engineering is an inherent part of project management - the part that is concerned with guiding the engineering effort itself - setting its objectives, guiding its execution, evaluating its results, and prescribing necessary corrective actions to keep it on course." (Alexander Kossiakoff et al, "Systems Engineering: Principles and practice" 2nd Ed., 2003)

"Synergy is the combined action that occurs when people work together to create new alternatives and solutions. In addition, the greatest opportunity for synergy occurs when people have different viewpoints, because the differences present new opportunities. The essence of synergy is to value and respect differences and take advantage of them to build on strengths and compensate for weaknesses." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"[…] in cybernetics, control is seen not as a function of one agent over something else, but as residing within circular causal networks, maintaining stabilities in a system. Circularities have no beginning, no end and no asymmetries. The control metaphor of communication, by contrast, punctuates this circularity unevenly. It privileges the conceptions and actions of a designated controller by distinguishing between messages sent in order to cause desired effects and feedback that informs the controller of successes or failures." (Klaus Krippendorff, "On Communicating: Otherness, Meaning, and Information", 2009)

"The passage of time and the action of entropy bring about ever-greater complexity - a branching, blossoming tree of possibilities. Blossoming disorder (things getting worse), now unfolding within the constraints of the physics of our universe, creates novel opportunities for spontaneous ordered complexity to arise." (D J MacLennan, "Frozen to Life", 2015)

"Understanding the entire data ecosystem, from the production of a data point to its consumption in a dashboard or a visualization, provides the ability to invoke action, which is more valuable than the mere sum of its parts." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

07 August 2025

❄️Systems Thinking: On Interactions (Quotes)

"[...] there is a universal principle, operating in every department of nature and at every stage of evolution, which is conservative, creative and constructive. [...] I have at last fixed upon the word synergy, as the term best adapted to express its twofold character of ‘energy’ and ‘mutuality’ or the systematic and organic ‘working together’ of the antithetical forces of nature. [...] Synergy is a synthesis of work, or synthetic work, and this is what is everywhere taking place. It may be said to begin with the primary atomic collision in which mass, motion, time, and space are involved, and to find its simplest expression in the formula for force, which implies a plurality of elements, and signifies an interaction of these elements." (Lester F Ward, "Pure Sociology", 1903)

"Social structures are the products of social synergy, i.e., of the interaction of different social forces, all of which, in and of themselves, are destructive, but whose combined effect, mutually checking, constraining, and equilibrating one another, is to produce structures. The entire drift is toward economy, conservatism, and the prevention of waste. Social structures are mechanisms for the production of results, and the results cannot be secured without them. They are reservoirs of power." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"The true nature of the universal principle of synergy pervading all nature and creating all the different kinds of structure that we observe to exist, must now be made clearer. Primarily and essentially it is a process of equilibration, i.e., the several forces are first brought into a state of partial equilibrium. It begins in collision, conflict, antagonism, and opposition, and then we have the milder phases of antithesis, competition, and interaction, passing next into a modus vivendi, or compromise, and ending in collaboration and cooperation. […] The entire drift is toward economy, conservatism, and the prevention of waste." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"One may generalize upon these processes in terms of group equilibrium. The group may be said to be in equilibrium when the interactions of its members fall into the customary pattern through which group activities are and have been organized. The pattern of interactions may undergo certain modifications without upsetting the group equilibrium, but abrupt and drastic changes destroy the equilibrium." (William F Whyte, "Street Corner Society", 1943)

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits' - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Only a modern systems approach promises to get the full complexity of the interacting phenomena - to see not only the causes acting on the phenomena under study, the possible consequences of the phenomena and the possible mutual interactions of some of these factors, but also to see the total emergent processes as a function of possible positive and/or negative feedbacks mediated by the selective decisions, or 'choices', of the individuals and groups directly involved." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"We may state as characteristic of modern science that this scheme of isolable units acting in one-way causality has proven to be insufficient. Hence the appearance, in all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc., which all signify that, in the last resort, we must think in terms of systems of elements in mutual interaction […]." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium.” (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms." (Charles J Krebs, "Ecology", 1972)

"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The dynamics of any system can be explained by showing the relations between its parts and the regularities of their interactions so as to reveal its organization. For us to fully understand it, however, we need not only to see it as a unity operating in its internal dynamics, but also to see it in its circumstances, i.e., in the context to which its operation connects it. This understanding requires that we adopt a certain distance for observation, a perspective that in the case of historical systems implies a reference to their origin. This can be easy, for instance, in the case of man-made machines, for we have access to every detail of their manufacture. The situation is not that easy, however, as regards living beings: their genesis and their history are never directly visible and can be reconstructed only by fragments."  (Humberto Maturana, "The Tree of Knowledge", 1987)

"Unlike its predecessor, the new cybernetics concerns itself with the interaction of autonomous political actors and subgroups, and the practical and reflexive consciousness of the subjects who produce and reproduce the structure of a political community. A dominant consideration is that of recursiveness, or self-reference of political action both with regards to the expression of political consciousness and with the ways in which systems build upon themselves." (Peter Harries-Jones, The Self-Organizing Policy: An Epistemological Analysis of Political Life by Laurent Dobuzinskis, Canadian Journal of Political Science 21 (2), 1988)

"A system of variables is 'interrelated' if an action that affects or meant to affect one part of the system will also affect other parts of it. Interrelatedness guarantees that an action aimed at one variable will have side effects and long-term repercussions. A large number of variables will make it easy to overlook them." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"All dynamics arise from the interaction of just two types of feedback loops, positive (or self-reinforcing) and negative (or self-correcting) loops. Positive loops tend to reinforce or amplify whatever is happening in the system […] Negative loops counteract and oppose change." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"True systems thinking, on the other hand, studies each problem as it relates to the organization’s objectives and interaction with its entire environment, looking at it as a whole within its universe. Taking your organization from a partial systems to a true systems state requires effective strategic management and backward thinking." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The addition of new elements or agents to a particular system multiplies exponentially the number of connections or potential interactions among those elements or agents, and hence the number of possible outcomes. This is an important attribute of complexity theory." (Mark Marson, "What Are Its Implications for Educational Change?", 2008)

"Complexity theory embraces things that are complicated, involve many elements and many interactions, are not deterministic, and are given to unexpected outcomes. […] A fundamental aspect of complexity theory is the overall or aggregate behavior of a large number of items, parts, or units that are entangled, connected, or networked together. […] In contrast to classical scientific methods that directly link theory and outcome, complexity theory does not typically provide simple cause-and-effect explanations." (Robert E Gunther et al, "The Network Challenge: Strategy, Profit, and Risk in an Interlinked World", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

❄️Systems Thinking: On Scale-Free Networks (Quotes)

"[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In contrast to gravitation, interatomic forces are typically modeled as inhomogeneous power laws with at least two different exponents. Such laws (and exponential laws, too) are not scale-free; they necessarily introduce a characteristic length, related to the size of the atoms. Power laws also govern the power spectra of all kinds of noises, most intriguing among them the ubiquitous (but sometimes difficult to explain)." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In networks belonging to the second category, the winner takes all, meaning that the fittest node grabs all links, leaving very little for the rest of the nodes. Such networks develop a star topology, in which all nodes are connected to a central hub. In such a hub-and-spokes network there is a huge gap between the lonely hub and everybody else in the system. Thus a winner-takes-all network is very different from the scale-free networks we encountered earlier, where there is a hierarchy of hubs whose size distribution follows a power law. A winner-takes-all network is not scale-free. Instead there is a single hub and many tiny nodes. This is a very important distinction." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The first category includes all networks in which, despite the fierce competition for links, the scale-free topology survives. These networks display a fit-get-rich behavior, meaning that the fittest node will inevitably grow to become the biggest hub. The winner's lead is never significant, however. The largest hub is closely followed by a smaller one, which acquires almost as many links as the fittest node. At any moment we have a hierarchy of nodes whose degree distribution follows a power law. In most complex networks, the power law and the fight for links thus are not antagonistic but can coexist peacefully."(Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"At an anatomical level - the level of pure, abstract connectivity - we seem to have stumbled upon a universal pattern of complexity. Disparate networks show the same three tendencies: short chains, high clustering, and scale-free link distributions. The coincidences are eerie, and baffling to interpret." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"In a random network the loss of a small number of nodes can cause the overall network to become incoherent - that is, to break into disconnected subnetworks. In a scale-free network, such an event usually won’t disrupt the overall network because most nodes don’t have many links. But there’s a big caveat to this general principle: if a scale-free network loses a hub, it can be disastrous, because many other nodes depend on that hub." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

"Scale-free networks are particularly vulnerable to intentional attack: if someone wants to wreck the whole network, he simply needs to identify and destroy some of its hubs. And here we see how our world’s increasing connectivity really matters. Scientists have found that as a scale-free network like the Internet or our food-distribution system grows- as it adds more nodes - the new nodes tend to hook up with already highly connected hubs." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

06 August 2025

❄️Systems Thinking: On Problem Solving (Quotes)

"Even these humble objects reveal that our reality is not a mere collocation of elemental facts, but consists of units in which no part exists by itself, where each part points beyond itself and implies a larger whole. Facts and significance cease to be two concepts belonging to different realms, since a fact is always a fact in an intrinsically coherent whole. We could solve no problem of organization by solving it for each point separately, one after the other; the solution had to come for the whole. Thus we see how the problem of significance is closely bound up with the problem of the relation between the whole and its parts. It has been said: The whole is more than the sum of its parts. It is more correct to say that the whole is something else than the sum of its parts, because summing is a meaningless procedure, whereas the whole-part relationship is meaningful." (Kurt Koffka, "Principles of Gestalt Psychology", 1935)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits' - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957)

"Systems engineering is the name given to engineering activity which considers the overall behavior of a system, or more generally which considers all factors bearing on a problem, and the systems approach to control engineering problems is correspondingly that approach which examines the total dynamic behavior of an integrated system. It is concerned more with quality of performance than with sizes, capacities, or efficiencies, although in the most general sense systems engineering is concerned with overall, comprehensive appraisal." (Ernest F Johnson, "Automatic process control", 1958)

"[System dynamics] is an approach that should help in important top-management problems [...] The solutions to small problems yield small rewards. Very often the most important problems are but little more difficult to handle than the unimportant. Many [people] predetermine mediocre results by setting initial goals too low. The attitude must be one of enterprise design. The expectation should be for major improvement [...] The attitude that the goal is to explain behavior; which is fairly common in academic circles, is not sufficient. The goal should be to find management policies and organizational structures that lead to greater success." (Jay W Forrester, "Industrial Dynamics", 1961)

"Systems engineering is most effectively conceived of as a process that starts with the detection of a problem and continues through problem definition, planning and designing of a system, manufacturing or other implementing section, its use, and finally on to its obsolescence. Further, Systems engineering is not a matter of tools alone; It is a careful coordination of process, tools and people." (Arthur D. Hall, "Systems Engineering from an Engineering Viewpoint" In: Systems Science and Cybernetics. Vol.1 Issue.1, 1965)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"Only if mathematical rigor is adhered to, can systems problems be dealt with effectively, and so it is that the systems engineer must, at least, develop an appreciation for mathematical rigor if not also considerable mathematical competence." (A Wayne Wymore, "A Mathematical Theory of Systems Engineering", 1967)

"Solving a problem simply means representing it so as to make the solution transparent." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"It remains an unhappy fact that there is no best method for finding the solution to general nonlinear optimization problems. About the best general procedure yet devised is one that relies upon imbedding the original problem within a family of problems, and then developing relations linking one member of the family to another. If this can be done adroitly so that one family member is easily solvable, then these relations can be used to step forward from the solution of the easy problem to that of the original problem. This is the key idea underlying dynamic programming, the most flexible and powerful of all optimization methods." (John L Casti, "Five Golden Rules", 1995)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem … create a shared social reality […] a shared understanding of the problem and potential solutions … to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"True systems thinking, on the other hand, studies each problem as it relates to the organization’s objectives and interaction with its entire environment, looking at it as a whole within its universe. Taking your organization from a partial systems to a true systems state requires effective strategic management and backward thinking." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"System Thinking is a common concept for understanding how causal relationships and feedbacks work in an everyday problem. Understanding a cause and an effect enables us to analyse, sort out and explain how changes come about both temporarily and spatially in common problems. This is referred to as mental modelling, i.e. to explicitly map the understanding of the problem and making it transparent and visible for others through Causal Loop Diagrams (CLD)." (Hördur V. Haraldsson, "Introduction to System Thinking and Causal Loop Diagrams", 2004)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"A systems approach is one that focuses on the system as a whole, specifically linking value judgments (what is desired) and design decisions (what is feasible). A true systems approach means that the design process includes the 'problem' as well as the solution. The architect seeks a joint problem–solution pair and understands that the problem statement is not fixed when the architectural process starts. At the most fundamental level, systems are collections of different things that together produce results unachievable by the elements alone."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as 'requirements'  is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"DevOps is about team play and a collaborative problem-solving approach. If a service goes down, everyone must know what procedures to follow to diagnose the problem and get the system up and running again. Additionally, all of the roles and skills necessary to perform these tasks must be available and able to work together well. Training and effective collaboration are critical here." (Michael Hüttermann et al, "DevOps for Developers", 2013)

05 August 2025

❄️Systems Thinking: On Causal Maps (Quotes)

"Causal maps are representations of individuals (or groups) beliefs about causal relations. They include elements, with only two kinds of properties. The first property is 'relevance'. The second  is the possibility of being in one (of two) 'influence relationships' (positive or negative) with one (of three) strengths (weak. moderate, or strong)." (Kivia Markoczy & Jeff Goldberg, "A method for eliciting and comparing causal maps", 1995)

"Short-term memory can hold 7 ± 2 chunks of information at once. This puts a rather sharp limit on the effective size and complexity of a causal map. Presenting a complex causal map all at once makes it hard to see the loops, understand which are important, or understand how they generate the dynamics. Resist the temptation to put all the loops you and your clients have identified into a single comprehensive diagram." (John D Sterman, "Business Dynamics Systems Thinking and Modeling for a Complex World", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"A causal map is an abstract representation of the causal relationships among kinds of objects and events in the world. Such relationships are not, for the most part, directly observable, but they can often be accurately inferred from observations. This includes both observations of patterns of contingency and correlation among events as well as observations of the effects of experimental interventions. We can think of everyday theories and theory-formation processes as cognitive systems that allow us to recover an accurate causal map of the world." (Alison Gopnik & Clark Glymour, "Causal maps and Bayes nets: a cognitive and computational account of theory-formation" [in "The cognitive basis of science"], 2002)

"Causal mapping is a simple and useful technique for addressing situations where thinking - as an individual or as a group - matters. A causal map is a word-and-arrow diagram in which ideas and actions are causally linked with one another through the use of arrows. The arrows indicate how one idea or action leads to another. Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that people can know what to do in an area of concern, how to do it and why, because the arrows indicate the causes and consequences of an idea or action." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping is [...]  a technique for linking strategic thinking and acting, helping make sense of complex problems, and communicating to oneself and others what might be done about them. With practice, the use of causal mapping can assist you in moving from 'winging it' when thinking matters to a more concrete and rigorous approach that helps you and others achieve success in an easy and far more reliable way" (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that we can better understand an area of concern. Causal mapping also helps us know what to do about the issue, what it would take to do those things, and what we would like to get out of having done so. Causal mapping is therefore a particularly powerful technique for making sense of complex problems, linking strategic thinking and acting, and helping to communicate to others what might or should be done. " (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal maps include elements called nodes, which are allowed to have causal relationships of different strengths of positive or negative loading depicted with a number, usually in the range of from 1 (weak) to 3 (strong). The relationships of the nodes are depicted with arcs or links labeled with the assumed polarity and loading factor or strength of causality, Links with positive polarity refer to dependency (when A increases B increases proportionally to the loading factor) and negative to inverse dependency (when A increases, B decreases)." (Hannu Kivijärvi et al, "A Support System for the Strategic Scenario Process", Encyclopedia of Decision Making and Decision Support Technologies, 2008)

"Fifth principle: (a) in finding solutions for systemic problems do not be content with symptomatic solutions but look for systemic-structural levers that can produce the more incisive effect; (b) if there are several systemic levers, choose the most efficient, that which produces the maximum effects with the minimum effort; (c) to activate the chosen structural lever identify the most effective decisional lever (action variable) taking into account the time necessary to produce the desired effect; (d) the choice of structural and decisional levers, as well as the intensity of the actions to modify their values, must follow from a careful construction, interpretation and assessment of the system’s causal map." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"(1) The causal maps are only models of a world of variables and processes; (2) They are models suitable for depicting that world only if they represent a logical image; (3) A logical image is made up of a network of arrows that depict the cause and effect connections among the variables and processes in the world; this network cannot be in contradiction to the world; (4) This depiction of the world relates to the boundaries between the represented and the external systems; the causal maps always depict a portion of a vaster world;" (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"In constructing causal maps, whatever technique is adopted, there is always the problem of identifying or defining the system’s boundaries, either if we zoom in or broaden our perspective by zooming out." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"A Causal Map is hierarchical in structure (linking means to ends) and built with a focus on achieving goals. The process of creating the maps is ideally a group process and this in itself will add lots of value to a collective understanding of goals around EDI, what is required to achieve these and some of the potential challenges around this." (Nicola Morrill, "Supporting Your Efforts on Diversity", 2021)

❄️Systems Thinking: On Architecture (Quotes)

"Thus, the central theme that runs through my remarks is that complexity frequently takes the form of hierarchy, and that hierarchic systems have some common properties that are independent of their specific content. Hierarchy, I shall argue, is one of the central structural schemes that the architect of complexity uses." (Herbert A Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"From a functional point of view, mental models can be described as symbolic structures which permit people: to generate descriptions of the purpose of a system, to generate descriptions of the architecture of a system, to provide explanations of the state of a system, to provide explanations of the functioning of a system, to make predictions of future states of a system." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The architecture of systems problem solving, to which this book is primarily devoted, should follow the general aims and principles of any architecture [...]. First of all, it should be user-oriented, i.e., it should cover all types of systems problems with which the envisioned users deal. Although the notion of the user should be given as broad interpretation as possible, the primary focus is on scientists, engineers, and professionals of all sorts. The various types of systems problems are thus predominantly extracted from systems problems recognized in various branches of science and engineering, as well as professions such as medicine, management, or law." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed., 2003)

The purpose of architecture is to identify and properly characterize those functions of an artifact under design, be it a building, a machine, or an expert system, that are necessary for achieving a given goal." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed., 2003)

"The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"A graph enables us to visualize a relation over a set, which makes the characteristics of relations such as transitivity and symmetry easier to understand. […] Notions such as paths and cycles are key to understanding the more complex and powerful concepts of graph theory. There are many degrees of connectedness that apply to a graph; understanding these types of connectedness enables the engineer to understand the basic properties that can be defined for the graph representing some aspect of his or her system. The concepts of adjacency and reachability are the first steps to understanding the ability of an allocated architecture of a system to execute properly." (Dennis M Buede, "The Engineering Design of Systems: Models and methods", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems."  (Albert-László Barabási, "Network Science", 2016)

"Good architecture should be a projection of life itselfand that implies an intimate knowledge ofbiological, social, technical and artistic problems." (Walter Gropius)

Related Posts Plugin for WordPress, Blogger...