24 October 2021

🏷️Knowledge Representation: On Artificial Intelligence (Quotes)

"There is no security against the ultimate development of mechanical consciousness, in the fact of machines possessing little consciousness now. A mollusc has not much consciousness. Reflect upon the extraordinary advance which machines have made during the last few hundred years, and note how slowly the animal and vegetable kingdoms are advancing. The more highly organized machines are creatures not so much of yesterday, as of the last five minutes, so to speak, in comparison with past time." (Samuel Butler, "Erewhon: Or, Over the Range", 1872)

"In other words then, if a machine is expected to be infallible, it cannot also be intelligent. There are several theorems which say almost exactly that. But these theorems say nothing about how much intelligence may be displayed if a machine makes no pretense at infallibility." (Alan M Turing, 1946)

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." (Alan Turing, "Computing Machinery and Intelligence", 1950)

"The original question, 'Can machines think?:, I believe too meaningless to deserve discussion. Nevertheless I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted." (Alan M Turing, 1950) 

"The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that there is no virtue in the mere working out of consequences from data and general principles." (Alan Turing, "Computing Machinery and Intelligence", Mind Vol. 59, 1950)

"The following are some aspects of the artificial intelligence problem: […] If a machine can do a job, then an automatic calculator can be programmed to simulate the machine. […] It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning and rules of conjecture. From this point of view, forming a generalization consists of admitting a new word and some rules whereby sentences containing it imply and are implied by others. This idea has never been very precisely formulated nor have examples been worked out. […] How can a set of (hypothetical) neurons be arranged so as to form concepts. […] to get a measure of the efficiency of a calculation it is necessary to have on hand a method of measuring the complexity of calculating devices which in turn can be done. […] Probably a truly intelligent machine will carry out activities which may best be described as self-improvement. […] A number of types of 'abstraction' can be distinctly defined and several others less distinctly. […] the difference between creative thinking and unimaginative competent thinking lies in the injection of a some randomness. The randomness must be guided by intuition to be efficient." (John McCarthy et al, "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence", 1955)

"We shall therefore say that a program has common sense if it automatically deduces for itself a sufficient wide class of immediate consequences of anything it is told and what it already knows. [...] Our ultimate objective is to make programs that learn from their experience as effectively as humans do." (John McCarthy, "Programs with Common Sense", 1958)

"Although it sounds implausible, it might turn out that above a certain level of complexity, a machine ceased to be predictable, even in principle, and started doing things on its own account, or, to use a very revealing phrase, it might begin to have a mind of its own." (John R Lucas, "Minds, Machines and Gödel", 1959)

"The future offers very little hope for those who expect that our new mechanical slaves will offer us a world in which we may rest from thinking. Help us they may, but at the cost of supreme demands upon our honesty and intelligence. The world of the future will be an ever more demanding struggle against the limitations of our intelligence, not a comfortable hammock in which we can lay down to be waited upon by our robot slaves." (Norbert Wiener, "God and Golem, Inc.: A Comment on Certain Points Where Cybernetics Impinges on Religion", 1964)

"When intelligent machines are constructed, we should not be surprised to find them as confused and as stubborn as men in their convictions about mind-matter, consciousness, free will, and the like." (Marvin Minsky, "Matter, Mind, and Models", Proceedings of the International Federation of Information Processing Congress Vol. 1 (49), 1965)

"Artificial intelligence is the science of making machines do things that would require intelligence if done by men." (Marvin Minsky, 1968)

"Intelligence has two parts, which we shall call the epistemological and the heuristic. The epistemological part is the representation of the world in such a form that the solution of problems follows from the facts expressed in the representation. The heuristic part is the mechanism that on the basis of the information solves the problem and decides what to do." (John McCarthy & Patrick J Hayes, "Some Philosophical Problems from the Standpoint of Artificial Intelligence", Machine Intelligence 4, 1969)

"There are now machines in the world that think, that learn and create. Moreover, their ability to do these things is going to increase rapidly until - in the visible future - the range of problems they can handle will be coextensive with the range to which the human mind has been applied." (Allen Newell & Herbert A Simon, "Human problem solving", 1976)

"It is essential to realize that a computer is not a mere 'number cruncher', or supercalculating arithmetic machine, although this is how computers are commonly regarded by people having no familiarity with artificial intelligence. Computers do not crunch numbers; they manipulate symbols. [...] Digital computers originally developed with mathematical problems in mind, are in fact general purpose symbol manipulating machines." (Margaret A Boden, "Minds and mechanisms", 1981)

"The basic idea of cognitive science is that intelligent beings are semantic engines - in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found." (John Haugeland, "Semantic Engines: An introduction to mind design", 1981)

"The digital-computer field defined computers as machines that manipulated numbers. The great thing was, adherents said, that everything could be encoded into numbers, even instructions. In contrast, scientists in AI [artificial intelligence] saw computers as machines that manipulated symbols. The great thing was, they said, that everything could be encoded into symbols, even numbers." (Allen Newell, "Intellectual Issues in the History of Artificial Intelligence", 1983)

"Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped onto the other (the computer)." (George Johnson, Machinery of the Mind: Inside the New Science of Artificial Intelligence, 1986)

"Cybernetics is simultaneously the most important science of the age and the least recognized and understood. It is neither robotics nor freezing dead people. It is not limited to computer applications and it has as much to say about human interactions as it does about machine intelligence. Today’s cybernetics is at the root of major revolutions in biology, artificial intelligence, neural modeling, psychology, education, and mathematics. At last there is a unifying framework that suspends long-held differences between science and art, and between external reality and internal belief." (Paul Pangaro, "New Order From Old: The Rise of Second-Order Cybernetics and Its Implications for Machine Intelligence", 1988)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"The deep paradox uncovered by AI research: the only way to deal efficiently with very complex problems is to move away from pure logic. [...] Most of the time, reaching the right decision requires little reasoning.[...] Expert systems are, thus, not about reasoning: they are about knowing. [...] Reasoning takes time, so we try to do it as seldom as possible. Instead we store the results of our reasoning for later reference." (Daniel Crevier, "The Tree of Knowledge", 1993)

"The insight at the root of artificial intelligence was that these 'bits' (manipulated by computers) could just as well stand as symbols for concepts that the machine would combine by the strict rules of logic or the looser associations of psychology." (Daniel Crevier, "AI: The tumultuous history of the search for artificial intelligence", 1993)

"Artificial intelligence comprises methods, tools, and systems for solving problems that normally require the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way, and to understand." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"But intelligence is not just a matter of acting or behaving intelligently. Behavior is a manifestation of intelligence, but not the central characteristic or primary definition of being intelligent. A moment's reflection proves this: You can be intelligent just lying in the dark, thinking and understanding. Ignoring what goes on in your head and focusing instead on behavior has been a large impediment to understanding intelligence and building intelligent machines." (Jeff Hawkins, "On Intelligence", 2004)

"The brain and its cognitive mental processes are the biological foundation for creating metaphors about the world and oneself. Artificial intelligence, human beings’ attempt to transcend their biology, tries to enter into these scenarios to learn how they function. But there is another metaphor of the world that has its own particular landscapes, inhabitants, and laws. The brain provides the organic structure that is necessary for generating the mind, which in turn is considered a process that results from brain activity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"From a historical viewpoint, computationalism is a sophisticated version of behaviorism, for it only interpolates the computer program between stimulus and response, and does not regard novel programs as brain creations. [...] The root of computationalism is of course the actual similarity between brains and computers, and correspondingly between natural and artificial intelligence. The two are indeed similar because the artifacts in question have been designed to perform analogs of certain brain functions. And the computationalist program is an example of the strategy of treating similars as identicals." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Artificial intelligence is a concept that obscures accountability. Our problem is not machines acting like humans - it's humans acting like machines." (John Twelve Hawks, "Spark", 2014)

"AI failed (at least relative to the hype it had generated), and it’s partly out of embarrassment on behalf of their discipline that the term 'artificial intelligence' is rarely used in computer science circles (although it’s coming back into favor, just without the over-hyping). We are as far away from mimicking human intelligence as we have ever been, partly because the human brain is fantastically more complicated than a mere logic engine." (Field Cady, "The Data Science Handbook", 2017)

"AI ever allows us to truly understand ourselves, it will not be because these algorithms captured the mechanical essence of the human mind. It will be because they liberated us to forget about optimizations and to instead focus on what truly makes us human: loving and being loved." (Kai-Fu Lee, "AI Superpowers: China, Silicon Valley, and the New World Order", 2018)

"Artificial intelligence is defined as the branch of science and technology that is concerned with the study of software and hardware to provide machines the ability to learn insights from data and the environment, and the ability to adapt in changing situations with high precision, accuracy and speed." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

"Artificial Intelligence is not just learning patterns from data, but understanding human emotions and its evolution from its depth and not just fulfilling the surface level human requirements, but sensitivity towards human pain, happiness, mistakes, sufferings and well-being of the society are the parts of the evolving new AI systems." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

"Artificial intelligence is the elucidation of the human learning process, the quantification of the human thinking process, the explication of human behavior, and the understanding of what makes intelligence possible." (Kai-Fu Lee, "AI Superpowers: China, Silicon Valley, and the New World Order", 2018) 

"AI won‘t be fool proof in the future since it will only as good as the data and information that we give it to learn. It could be the case that simple elementary tricks could fool the AI algorithm and it may serve a complete waste of output as a result." (Zoltan Andrejkovics, "Together: AI and Human. On the Same Side", 2019)

"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)

"A significant factor missing from any form of artificial intelligence is the inability of machines to learn based on real life experience. Diversity of life experience is the single most powerful characteristic of being human and enhances how we think, how we learn, our ideas and our ability to innovate. Machines exist in a homogeneous ecosystem, which is ok for solving known challenges, however even Artificial General Intelligence will never challenge humanity in being able to acquire the knowledge, creativity and foresight needed to meet the challenges of the unknown." (Tom Golway, 2021)

"Every machine has artificial intelligence. And the more advanced a machine gets, the more advanced artificial intelligence gets as well. But, a machine cannot feel what it is doing. It only follows instructions - our instructions - instructions of the humans. So, artificial intelligence will not destroy the world. Our irresponsibility will destroy the world." (Abhijit Naskar)

17 October 2021

🦋Science: On Principles (Quotes)

"In all disciplines in which there is systematic knowledge of things with principles, causes, or elements, it arises from a grasp of those: we think we have knowledge of a thing when we have found its primary causes and principles, and followed it back to its elements." (Aristotle, "Physics", cca. 350 BC)

"[…] the least initial deviation from the truth is multiplied later a thousand-fold. Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter. The reason is that a principle is great rather in power than in extent; hence that which was small at the start turns out a giant at the end." (St. Thomas Aquinas, "De Ente et Essentia", cca. 1252)

"It is superfluous to suppose that what can be accounted for by a few principles has been produced by many." (Thomas Aquinas, "Summa Theologica", cca. 1266-1273)

"Reality cannot be found except in One single source, because of the interconnection of all things with one another. […] It is a good thing to proceed in order and to establish propositions (principles). This is the way to gain ground and to progress with certainty." (Gottfried Leibniz, 1670)

"Every science has for its basis a system of principles as fixed and unalterable as those by which the universe is regulated and governed. Man cannot make principles; he can only discover them." (Thomas Paine, "The Age of Reason", 1794)

"A maxim is a conclusion upon observation of matters of fact, and is merely speculative; a ‘principle’ carries knowledge within itself, and is prospective." (Samuel T Coleridge, "The Table Talk and Omniana of Samuel Taylor Coleridge", 1831)

"The function of theory is to put all this in systematic order, clearly and comprehensively, and to trace each action to an adequate, compelling cause. […] Theory should cast a steady light on all phenomena so that we can more easily recognize and eliminate the weeds that always spring from ignorance; it should show how one thing is related to another, and keep the important and the unimportant separate. If concepts combine of their own accord to form that nucleus of truth we call a principle, if they spontaneously compose a pattern that becomes a rule, it is the task of the theorist to make this clear." (Carl von Clausewitz, "On War", 1832)

"In the original discovery of a proposition of practical utility, by deduction from general principles and from experimental data, a complex algebraical investigation is often not merely useful, but indispensable; but in expounding such a proposition as a part of practical science, and applying it to practical purposes, simplicity is of the importance: - and […] the more thoroughly a scientific man has studied higher mathematics, the more fully does he become aware of this truth – and […] the better qualified does he become to free the exposition and application of principles from mathematical intricacy." (William J M Rankine, "On the Harmony of Theory and Practice in Mechanics", 1856)

"The more man inquires into the laws which regulate the material universe, the more he is convinced that all its varied forms arise from the action of a few simple principles." (Charles Babbage, "Passages From the Life of a Philosopher", 1864)

"As in the experimental sciences, truth cannot be distinguished from error as long as firm principles have not been established through the rigorous observation of facts." (Louis Pasteur, "Étude sur la maladie des vers à soie", 1870)

"It is of the nature of true science to take nothing on trust or on authority. Every fact must be established by accurate observation, experiment, or calculation. Every law and principle must rest on inductive argument." (Sir John W Dawson, "The Chain of Life in Geological Time", 1880)

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." (Hermann Weyl, "Unterrichtsblätter für Mathematik und Naturwissenschaften", 1932)

"The fundamental gospel of statistics is to push back the domain of ignorance, prejudice, rule-of-thumb, arbitrary or premature decisions, tradition, and dogmatism and to increase the domain in which decisions are made and principles are formulated on the basis of analyzed quantitative facts." (Robert W Burgess, "The Whole Duty of the Statistical Forecaster", Journal of the American Statistical Association 32 (200), 1937)

"It is always more easy to discover and proclaim general principles than it is to apply them." (Winston Churchill, "The Second World War: The gathering storm", 1948)

"The method of guessing the equation seems to be a pretty effective way of guessing new laws. This shows again that mathematics is a deep way of expressing nature, and any attempt to express nature in philosophical principles, or in seat-of-the-pants mechanical feelings, is not an efficient way." (Richard Feynman, "The Character of Physical Law", 1965)

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"Real progress in understanding nature is rarely incremental. All important advances are sudden intuitions, new principles, new ways of seeing." (Marilyn Ferguson, "The Aquarian Conspiracy: Personal and Social Transformation in the 1980s", 1980)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"Engineering is the application of scientific principles toward practical ends. If the engineering isn't practical, it's bad engineering." (Steve McConnell, "After the Gold Rush: Creating a True Profession of Software Engineering", 1999)

"A small error in the beginning (or in principles) leads to a big error in the end (or in conclusions)." (ancient axiom)

Related Posts Plugin for WordPress, Blogger...