30 October 2020

🏷️Knowledge Representation: On Representation (Quotes)

"Sometimes a thing is perceived [via sense-perception] when it is observed; then it is imagined, when it is absent [in reality] through the representation of its form inside, Sense-perception grasps [the concept] insofar as it is buried in these accidents that cling to it because of the matter out of which it is made without abstracting it from [matter], and it grasps it only by means of a connection through position [ that exists] between its perception and its matter. It is for this reason that the form of [the thing] is not represented in the external sense when [sensation] ceases. As to the internal [faculty of] imagination, it imagines [the concept] together with these accidents, without being able to entirely abstract it from them. Still, [imagination] abstracts it from the afore-mentioned connection [through position] on which sense-perception depends, so that [imagination] represents the form [of the thing] despite the absence of the form's [outside] carrier." (Avicenna Latinus [Ibn Sina], "Pointer and Reminders", cca. 1030)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

“Hence all these theories lead to the conception of a medium in which the propagation takes place, and if we admit this medium as an hypothesis, I think it ought to occupy a prominent place in our investigations, and that we ought to endeavour to construct a mental representation of all the details of its action, and this has been my constant aim in this treatise.” (James C Maxwell, “Treatise on Electricity and Magnetism” Vol. II, 1873)

"We produce these representations in and from ourselves with the same necessity with which the spider spins. If we are forced to comprehend all things only under these forms, then it ceases to be amazing that in all things we actually comprehend nothing but these forms. For they must all bear within themselves the laws of number, and it is precisely number which is most astonishing in things. All that conformity to law, which impresses us so much in the movement of the stars and in chemical processes, coincides at bottom with those properties which we bring to things. Thus it is we who impress ourselves in this way." (Friedrich Nietzsche, "On Truth and Lie in an Extra-Moral Sense", 1873) 

"The steps to scientific as well as other knowledge consist in a series of logical fictions which are as legitimate as they are indispensable in the operations of thought, but whose relations to the phenomena whereof they are the partial and not unfrequently merely symbolical representations must never be lost sight of." (John Stallo, "The Concepts and Theories of Modern Physics", 1884) 

"The theory most prevalent among teachers is that mathematics affords the best training for the reasoning powers; […] The modem, and to my mind true, theory is that mathematics is the abstract form of the natural sciences; and that it is valuable as a training of the reasoning powers, not because it is abstract, but because it is a representation of actual things." (Truman H Safford, "Mathematical Teaching and Its Modern Methods", 1886)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906) 

"The sole purpose of physical theory is to provide a representation and classification of experimental laws; the only test permitting us to judge a physical theory and pronounce it good or bad is the comparison between the consequences of this theory and the experimental laws it has to represent and classify."  (Pierre-Maurice-Marie Duhem, “The Aim and Structure of Physical Theory”, 1908)

“A geometrical-physical theory as such is incapable of being directly pictured, being merely a system of concepts. But these concepts serve the purpose of bringing a multiplicity of real or imaginary sensory experiences into connection in the mind. To ‘visualise’ a theory, or bring it home to one's mind, therefore means to give a representation to that abundance of experiences for which the theory supplies the schematic arrangement” (Albert Einstein, “Geometry and Experience”, 1921)

"We wish to obtain a representation of phenomena and form an image of them in our minds. Till now, we have always attempted to form these images by means of the ordinary notions of time and space. These notions are perhaps innate; in any case they have been developed by our daily observations. For me, these notions are clear, and I confess that I am unable to gain any idea of physics without them. […] I would like to retain this ideal of other days and describe everything that occurs in this world in terms of clear pictures." (Hendrik A Lorentz, [Fifth Solvay Conference] 1927)

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.” (Albert Einstein, [lecture] 1933)

"Although we can never devise a pictorial representation which shall be both true to nature and intelligible to our minds, we may still be able to make partial aspects of the truth comprehensible through pictorial representations or parables. As the whole truth does not admit of intelligible representation, every such pictorial representation or parable must fail somewhere. The physicist of the last generation was continually making pictorial representations and parables, and also making the mistake of treating the half-truths of pictorial representations and parables as literal truths.” (James H Jeans, “Physics and Philosophy” 3rd Ed., 1943)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

“Representation of the world, like the world itself, is the work of men; they describe it from their own point of view, which they confuse with absolute truth.” (Simone de Beauvoir, “The Second Sex”, 1949)

"Mathematics, like music and poetry, is a creation of the mind; [...] the primary task of the mathematician, like that of any other artist, is to extend man's mental horizon by representation and interpretation." (Graham Sutton, "Mathematics in Action", 1954)

"We have thus assigned to pure reason and experience their places in a theoretical system of physics. The structure of the system is the work of reason: the empirical contents and their mutual relations must find their representation in the conclusions of the theory. In the possibility of such a representation lie the sole value and justification of the whole system, and especially of the concepts and fundamental principles which underlie it. Apart from that, these latter are free inventions of human intellect, which cannot be justified either by the nature of that intellect or in any other fashion a priori." (Albert Einstein, "Ideas and Opinions", 1954)

"[a pictorial representation] is not a faithful record of a visual experience, but the faithful construction of a relational model […] Such a model can be constructed to any required degree of accuracy . What is decisive here is clearly the word 'required'. The form of a representation cannot be divorced from its purpose and the requirements of the society in which the given visual language gains currency." (Ernst H Gombrich," Art and illusion", 1960)

"A more problematic example is the parallel between the increasingly abstract and insubstantial picture of the physical universe which modern physics has given us and the popularity of abstract and non-representational forms of art and poetry. In each case the representation of reality is increasingly removed from the picture which is immediately presented to us by our senses." (Harvey Brooks, "Scientific Concepts and Cultural Change", 1965)

"A model is a qualitative or quantitative representation of a process or endeavor that shows the effects of those factors which are significant for the purposes being considered. A model may be pictorial, descriptive, qualitative, or generally approximate in nature; or it may be mathematical and quantitative in nature and reasonably precise. It is important that effective means for modeling be understood such as analog, stochastic, procedural, scheduling, flow chart, schematic, and block diagrams." (Harold Chestnut, "Systems Engineering Tools", 1965)

"As is used in connection with systems engineering, a model is a qualitative or quantitative representation of a process or endeavor that shows the effects of those factors which are significant for the purposes being considered. Modeling is the process of making a model. Although the model may not represent the actual phenomenon in all respects, it does describe the essential inputs, outputs, and internal characteristics, as well as provide an indication of environmental conditions similar to those of actual equipment." (Harold Chestnut, "Systems Engineering Tools", 1965)

"We say the map is different from the territory. But what is the territory? Operationally, somebody went out with a retina or a measuring stick and made representations which were then put on paper. What is on the paper map is a representation of what was in the retinal representation of the man who made the map; and as you push the question back, what you find is an infinite regress, an infinite series of maps. The territory never gets in at all. […] Always, the process of representation will filter it out so that the mental world is only maps of maps, ad infinitum." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

“A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas.” (Moshe F Rubinstein & Iris R Firstenberg, “Patterns of Problem Solving”, 1975)

"[…] there is an irreducible difference between the world and our experience of it. We as human beings do not operate directly on the world. Each of us creates a representation of the world in which we live - that is, we create a map or model which we use to generate our behavior. Our representation of the world determines to a large degree what our experience of the world will be, how we will perceive the world, what choices we will see available to us as we live in the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)

"The primitives of a representation are the most elementary units of shape information available in a representation." (David Marr, "Representation and recognition of the spatial organization of three-dimensional shapes", 1978) 

"A mental image occurs when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived; such representations preserve the perceptible properties of the stimulus and ultimately give rise to the subjective experience of perception." (Stephen M Kosslyn, "Image and Mind", 1980)

"Whenever I have talked about mental models, audiences have readily grasped that a layout of concrete objects can be represented by an internal spatial array, that a syllogism can be represented by a model of individuals and identities between them, and that a physical process can be represented by a three-dimensional dynamic model. Many people, however, have been puzzled by the representation of abstract discourse; they cannot understand how terms denoting abstract entities, properties or relations can be similarly encoded, and therefore they argue that these terms can have only 'verbal' or propositional representations." (Philip Johnson-Laird,"Mental Models: Towards a Cognitive Science of Language, Inference and Consciousness", 1983)

"The mapping from linguistic inputs to mental models is not a one-one mapping. So semantic properties of sentences may not be recoverable from a mental model. Reading or listening is typically for content not for form. People want to know what is being said to them, not how it is being said. [...] A mental model is a representation of the content of a text that need bear no resemblance to any of the text's linguistic representations. Its structure is similar to the situation described by the text." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"When we focus consciously on an object - and create a mental image for eexample- it's not because the brain pattern is a copy or neural representation of the perceived object, but because the brain experiences a special kind of interaction with that object, preparing the brain to deal with it." (Roger W Sperry, "New Mindset on Consciousness", Sunrise magazine, 1987/1988)

“[…] a mental model is a mapping from a domain into a mental representation which contains the main characteristics of the domain; a model can be ‘run’ to generate explanations and expectations with respect to potential states. Mental models have been proposed in particular as the kind of knowledge structures that people use to understand a specific domain […]” (Helmut Jungermann, Holger Schütz & Manfred Thuering, “Mental models in risk assessment: Informing people about drugs”, Risk Analysis 8 (1), 1988)

"An important symptom of an emerging understanding is the capacity to represent a problem in a number of different ways and to approach its solution from varied vantage points; a single, rigid representation is unlikely to suffice." (Howard Gardner, "The Unschooled Mind", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Somehow the breathless world that we witness seems far removed from the timeless laws of Nature which govern the elementary particles and forces of Nature. The reason is clear. We do not observe the laws of Nature: we observe their outcomes. Since these laws find their most efficient representation as mathematical equations, we might say that we see only the solutions of those equations not the equations themselves. This is the secret which reconciles the complexity observed in Nature with the advertised simplicity of her laws." (John D Barrow, "New Theories of Everything", 1991)

"A world view is a system of co-ordinates or a frame of reference in which everything presented to us by our diverse experiences can be placed. It is a symbolic system of representation that allows us to integrate everything we know about the world and ourselves into a global picture, one that illuminates reality as it is presented to us within a certain culture. […] A world view is a coherent collection of concepts and theorems that must allow us to construct a global image of the world, and in this way to understand as many elements of our experience as possible.” (Diederick Aerts et al, "World views: From Fragmentation to Integration”, 1994)

"A mental model is not normally based on formal definitions but rather on concrete properties that have been drawn from life experience. Mental models are typically analogs, and they comprise specific contents, but this does not necessarily restrict their power to deal with abstract concepts, as we will see. The important thing about mental models, especially in the context of mathematics, is the relations they represent. […]  The essence of understanding a concept is to have a mental representation or mental model that faithfully reflects the structure of that concept. (Lyn D. English & Graeme S. Halford, "Mathematics Education: Models and Processes", 1995)

"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Suppose the reasoning centers of the brain can get their hands on the mechanisms that plop shapes into the array and that read their locations out of it. Those reasoning demons can exploit the geometry of the array as a surrogate for keeping certain logical constraints in mind. Wealth, like location on a line, is transitive: if A is richer than B, and B is richer than C, then A is richer than C. By using location in an image to symbolize wealth, the thinker takes advantage of the transitivity of location built into the array, and does not have to enter it into a chain of deductive steps. The problem becomes a matter of plop down and look up. It is a fine example of how the form of a mental representation determines what is easy or hard to think." (Steven Pinker, "How the Mind Works", 1997)

"A certain theory of representation implies a certain theory of meaning - and meaning is what we live by." (Paul Cilliers, "Complexity and Postmodernism", 1998) 

"A model is an external and explicit representation of part of reality as seen by the people who wish to use that model to understand, to change, to manage, and to control that part of reality in some way or other." (Michael Pidd, "Just Modeling through: A Rough Guide to Modeling", Interfaces, Vol. 29, No. 2, 1999)

"In broad terms, a mental model is to be understood as a dynamic symbolic representation of external objects or events on the part of some natural or artificial cognitive system. Mental models are thought to have certain properties which make them stand out against other forms of symbolic representations." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"What it means for a mental model to be a structural analog is that it embodies a representation of the spatial and temporal relations among, and the causal structures connecting the events and entities depicted and whatever other information that is relevant to the problem-solving talks. […] The essential points are that a mental model can be nonlinguistic in form and the mental mechanisms are such that they can satisfy the model-building and simulative constraints necessary for the activity of mental modeling." (Nancy J Nersessian, "Model-based reasoning in conceptual change", 1999)

“As archetypes of our representation of the world, numbers form, in the strongest sense, part of ourselves, to such an extent that it can legitimately be asked whether the subject of study of arithmetic is not the human mind itself. From this a strange fascination arises: how can it be that these numbers, which lie so deeply within ourselves, also give rise to such formidable enigmas? Among all these mysteries, that of the prime numbers is undoubtedly the most ancient and most resistant." (Gerald Tenenbaum & Michael M France, “The Prime Numbers and Their Distribution”, 2000)

"Sometimes, however, a conceptual model is only a first step, and the second step is a mathematical representation of the conceptual model." (Gregory N Derry, "What Science Is and How It Works", 2002)

"In complexity thinking the darkness principle is covered by the concept of incompressibility… The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"But because of the way in which depictions represent, there is a correspondence between parts and spatial relations of the representation and those of the object; this structural mapping, which confers a type of resemblance, underlies the way images convey specific content. In this respect images are like pictures. Unlike words and symbols, depictions are not arbitrarily paired with what they represent." (Stephen Kosslyn et al, "The Case for Mental Imagery", 2006)

"A model is a representation in that it (or its properties) is chosen to stand for some other entity (or its properties), known as the target system. A model is a tool in that it is used in the service of particular goals or purposes; typically these purposes involve answering some limited range of questions about the target system." (Wendy S Parker, "Confirmation and Adequacy-for-Purpose in Climate Modelling", Proceedings of the Aristotelian Society, Supplementary Volumes, Vol. 83, 2009)

"Mental models represent possibilities, and the theory of mental models postulates three systems of mental processes underlying inference: (0) the construction of an intensional representation of a premise’s meaning – a process guided by a parser; (1) the building of an initial mental model from the intension, and the drawing of a conclusion based on heuristics and the model; and (2) on some occasions, the search for alternative models, such as a counterexample in which the conclusion is false. System 0 is linguistic, and it may be autonomous. System 1 is rapid and prone to systematic errors, because it makes no use of a working memory for intermediate results. System 2 has access to working memory, and so it can carry out recursive processes, such as the construction of alternative models." (Sangeet Khemlania & P.N. Johnson-Laird, "The processes of inference", Argument and Computation, 2012)

"Simply put, a conceptual model is a simplified representation of reality, devised for a certain purpose and seen from a certain point of view." (David W Emble & Bernhard Thalheim, "Handbook of Conceptual Modeling", 2012)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

“A mental model is not necessarily founded on facts or complete understanding of reality. Let's be honest, most of our mental models are flawed in many ways, and that's perfectly normal. They work because they are fast and simple and not because they are a complete representation of the reality. […] The most important thing about a person's mental model is that it's simplified and very limited compared to what it models.” (Peter W Szabo, “User Experience Mapping”, 2017)

"Once we understand our user's mental model, we can capture it in a conceptual model. The conceptual model is a representation of the mental model using elements, relationships, and conditions. Our design and final system will be the tangible result of this conceptual model." (Pau Giner & Pablo Perea, "UX Design for Mobile, 2017) 

"A model or conceptual model is a schematic or representation that describes how something works. We create and adapt models all the time without realizing it. Over time, as you gain more information about a problem domain, your model will improve to better match reality." (James Padolsey, "Clean Code in JavaScript", 2020)

12 October 2020

❄️Systems Thinking: On Self-Organization (Quotes)

"Natural processes should be judged different from mechanical ones because they are self-organizing." (Immanuel Kant, "Critique of Judgment", 1790)

"We must think of each part as an organ, that produces the other parts (so that each reciprocally produces the other) […] Because of this, [the organism] will be both an organized and self-organizing being." (Immanuel Kant, "Critique of Judgment", 1790)

"The self-organisation of society depends on commonly diffused symbols evoking commonly diffused ideas, and at the same time indicating commonly understood action." (Alfred N Whitehead, "Symbolism: Its Meaning and Effect", 1927)

"So far as physics is concerned, time's arrow is a property of entropy alone." (Arthur S Eddington, “The Nature of the Physical World”, 1928)

"[A living organism] feeds upon negative entropy […] Thus, the device by which an organism maintains itself stationary at a fairly high level of orderliness really consists in continually sucking orderliness from its environment." (Erwin Schrodinger, "What is Life? The Physical Aspect of the Living Cell", 1944)

"Progress imposes not only new possibilities for the future but new restrictions. It seems almost as if progress itself and our fight against the increase of entropy intrinsically must end in the downhill path from which we are trying to escape." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"[…] the characteristic tendency of entropy is to increase. As entropy increases, the universe, and all closed systems in the universe, tend naturally to deteriorate and lose their distinctiveness, to move from the least to the most probable state, from a state of organization and differentiation in which distinctions and forms exist, to a state of chaos and sameness." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"It is inherent in the logical character of the abstract self-organizing system that all available methods of organization are used, and that it cannot be realized in a single reference frame. Thus, any of the tricks which the physical model can perform, such as learning and remembering, may be performed by one or all of a variety of mechanisms, chemical or electrical or mechanical." (Gordon Pask, "The Natural History of Networks", 1960)

"Development of an organism from a single germ cell into a multicellular entity is a self-organizing system from any point of view and I wish to contend that this self-organizing system is a subsystem of the self-organizing system called 'evolution'." (Gordon Pask, "An Approach to Cybernetics", 1961)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"In self-organizing systems, on the other hand, ‘control’ of the organization is typically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium.” (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

“To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"There is nothing supernatural about the process of self-organization to states of higher entropy; it is a general property of systems, regardless of their materials and origin. It does not violate the Second Law of thermodynamics since the decrease in entropy within an open system is always offset by the increase of entropy in its surroundings." (Ervin László, "Introduction to Systems Philosophy", 1972)

"The phenomenon of self-organization is not limited to living matter but occurs also in certain chemical systems […] [Ilya] Prigogine has called these systems 'dissipative structures' to express the fact that they maintain and develop structure by breaking down other structures in the process of metabolism, thus creating entropy­ disorder - which is subsequently dissipated in the form of degraded waste products. Dissipative chemical structures display the dynamics of self-organization in its simplest form, exhibiting most of the phenomena characteristic of life self-renewal, adaptation, evolution, and even primitive forms of 'mental' processes." (Fritjof Capra, "The Turning Point: Science, Society, and the Turning Culture", 1982)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Autopoietic systems, then, are not only self-organizing systems, they not only produce and eventually change their own structures; their self-reference applies to the production of other components as well. This is the decisive conceptual innovation. […] Thus, everything that is used as a unit by the system is produced as a unit by the system itself. This applies to elements, processes, boundaries, and other structures and, last but not least, to the unity of the system itself." (Niklas Luhmann, "The Autopoiesis of Social Systems", 1990)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"The Law of Entropy Nonconservation required that life be lived forward, from birth to death. […] To wish for the reverse was to wish for the entropy of the universe to diminish with time, which was impossible. One might as well wish for autumn leaves to assemble themselves in neat stacks just as soon as they had fallen from trees or for water to freeze whenever it was heated." (Michael Guillen, "Five Equations That Changed the World", 1995)

"The second law of thermodynamics, which requires average entropy (or disorder) to increase, does not in any way forbid local order from arising through various mechanisms of self-organization, which can turn accidents into frozen ones producing extensive regularities. Again, such mechanisms are not restricted to complex adaptive systems." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"Distributed control means that the outcomes of a complex adaptive system emerge from a process of self-organization rather than being designed and controlled externally or by a centralized body." (Brenda Zimmerman et al, "A complexity science primer", 1998)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"In principle, a self-organising system cannot be constructed, since its organisation and behaviour cannot be prescribed and created by an external source. It emerges autonomously in certain conditions (which cannot be prescribed either). The task of the researcher is to investigate in what kind of systems and under what kind of conditions self-organisation emerges." (Rein Vihalemm, "Chemistry as an Interesting Subject for the Philosophy of Science", 2001)

"Self-organization [is] the appearance of structure or pattern without an external agent imposing it." (Francis Heylighen, "The science of Self-organization and Adaptivity", 2001)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The total disorder in the universe, as measured by the quantity that physicists call entropy, increases steadily as we go from past to future. On the other hand, the total order in the universe, as measured by the complexity and permanence of organized structures, also increases steadily as we go from past to future." (Freeman J Dyson, "A Many-Colored Glass: Reflections on the Place of Life in the Universe", 2007)

"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose."(Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"In the telephone system a century ago, messages dispersed across the network in a pattern that mathematicians associate with randomness. But in the last decade, the flow of bits has become statistically more similar to the patterns found in self-organized systems. For one thing, the global network exhibits self-similarity, also known as a fractal pattern. We see this kind of fractal pattern in the way the jagged outline of tree branches look similar no matter whether we look at them up close or far away. Today messages disperse through the global telecommunications system in the fractal pattern of self-organization." (Kevin Kelly, "What Technology Wants", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, God: "The Failed Hypothesis", 2010)

"Self-organization is a dynamical process by which a system spontaneously forms nontrivial macroscopic structures and/or behaviors over time." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

07 October 2020

❄️Systems Thinking: On Holistic View (Quotes)

"Tektology must clarify the modes of organization that are perceived to exist in nature and human activity; then it must generalize and systematize these modes; further it must explain them, that is, propose abstract schemes of their tendencies and laws; finally, based on these schemes, determine the direction of organizational methods and their role in the universal process. This general plan is similar to the plan of any natural science; but the objective of tektology is basically different. Tektology deals with organizational experiences not of this or that specialized field, but of all these fields together. In other words, tektology embraces the subject matter of all the other sciences and of all the human experience giving rise to these sciences, but only from the aspect of method, that is, it is interested only in the modes of organization of this subject matter." (Alexander Bogdanov." Tektologia: Vseobshchaya Organizatsionnaya Nauka" ["Tektology: The Universal Organizational Science"], 1922)

"Creative evolution synthesises from the parts a new entity not only different from them, but quite transcending them. That is the essence of a whole. It is always transcendent to its parts, and its character cannot be inferred from the characters of its parts." (Jan Smuts, "Holism and Evolution", 1926)

"[Holism is] the tendency in nature to form wholes that are greater than the sum of the parts through creative evolution […]" (Jan Smuts, "Holism and Evolution", 1926)

"An ecological approach to public administration builds, then, quite literally from the ground up; from the elements of a place - soils, climate, location, for example - to the people who live there - their numbers and ages and knowledge, and the ways of physical and social technology by which from the place and in relationships with one another, they get their living. It is within this setting that their instruments and practices of public housekeeping should be studied so that they may better understand what they are doing, and appraise reasonably how they are doing it. Such an approach is of particular interest to us as students seeking to co-operate in our studies; for it invites - indeed is dependent upon - careful observation by many people in different environments of the roots of government functions, civic attitudes, and operating problems." (John Merriman Gaus, "Reflections on public administration", 1947)

"A systems approach begins when first you see the world through the eyes of another." (C West Churchman, "The Systems Approach", 1968) 

"In the selection of papers for this volume, two problems have arisen, namely what constitutes systems thinking and what systems thinking is relevant to the thinking required for organizational management. The first problem is obviously critical. Unless there were a meaningful answer there would be no sense in producing a volume of readings in systems thinking in any subject. A great many writers have manifestly believed that there is a way of considering phenomena which is sufficiently different from the well-established modes of scientific analysis to deserve the particular title of systems thinking." (Frederick E Emery (ed.),"Systems thinking: selected readings", 1969)

"There are different levels of organization in the occurrence of events. You cannot explain the events of one level in terms of the events of another. For example, you cannot explain life in terms of mechanical concepts, nor society in terms of individual psychology. Analysis can only take you down the scale of organization. It cannot reveal the workings of things on a higher level. To some extent the holistic philosophers are right." (Anatol Rapoport,"General Systems" Vol. 14, 1969) 

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships."(Ervin László, "Introduction to Systems Philosophy", 1972) 

“The notion of ‘system’ has gained central importance in contemporary science, society and life. In many fields of endeavor, the necessity of a ‘systems approach’ or ‘systems thinking’ is emphasized, new professions called ‘systems engineering’, ‘systems analysis’ and the like have come into being, and there can be little doubt that this this concept marks a genuine, necessary, and consequential development in science and world-view.” (Ervin László, “Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought”, 1972)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"Holism traditionally says that a collection of beings may have a collective property that cannot be inferred from the properties of its members." (C West Churchman, "The Systems Approach and Its Enemies" , 1979) 

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987) 

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a framework for seeing interrelationships rather than things, for seeing patterns rather than static snapshots. It is a set of general principles spanning fields as diverse as physical and social sciences, engineering and management." (Peter Senge, "The Fifth Discipline", 1990)

"Systems philosophy brings forth a reorganization of ways of thinking. It creates a new worldview, a new paradigm of perception and explanation, which is manifested in integration, holistic thinking, purpose-seeking, mutual causality, and process-focused inquiry.” (Béla H. Bánáthy, "Systems Design of Education”, 1991)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A Pauli, "Steering business toward sustainability", 1995)

"In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance." (Fritjof Capra," The Web of Life: a new scientific understanding of living systems", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem … create a shared social reality […] a shared understanding of the problem and potential solutions … to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. […] Nourishing the community means nourishing those relationships." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"[...] information feedback about the real world not only alters our decisions within the context of existing frames and decision rules but also feeds back to alter our mental models. As our mental models change we change the structure of our systems, creating different decision rules and new strategies. The same information, processed and interpreted by a different decision rule, now yields a different decision. Altering the structure of our systems then alters their patterns of behavior. The development of systems thinking is a double-loop learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view and then redesign our policies and institutions accordingly." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Michael C. Jackson, "Systems Thinking: Creative Holism for Manager", 2003) 

"Systems thinking is only an epistemology, a particular way of describing the world. It does not tell us what the world is. Hence, strictly speaking, we should never say of something in the world: ‘It is a system’, only: ‘It may be described as a system.’" (John Mingers, Realising" Systems Thinking: Knowledge and Action in Management Science", 2006)

"At a time when the world is more messy, more crowded, more interconnected, more interdependent, and more rapidly changing than ever before, the more ways of seeing, the better. The systems-thinking lens allows us to reclaim our intuition about whole systems and hone our abilities to understand parts, see interconnections, ask 'what-if' questions about possible future behaviors, and be creative and courageous about system redesign. (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008) 

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience" , 2008) 

"Holism [is] the art - in contrast with reductionism - of seeing a complex system as a whole. Holism knows the limits to its understanding; it acknowledges that the system has its wildness, its privacy, its own reasons, its defenses against invasive explanation." (David Fleming, "Lean Logic", 2016) 

Related Posts Plugin for WordPress, Blogger...