07 August 2025

❄️Systems Thinking: On Interactions (Quotes)

"[...] there is a universal principle, operating in every department of nature and at every stage of evolution, which is conservative, creative and constructive. [...] I have at last fixed upon the word synergy, as the term best adapted to express its twofold character of ‘energy’ and ‘mutuality’ or the systematic and organic ‘working together’ of the antithetical forces of nature. [...] Synergy is a synthesis of work, or synthetic work, and this is what is everywhere taking place. It may be said to begin with the primary atomic collision in which mass, motion, time, and space are involved, and to find its simplest expression in the formula for force, which implies a plurality of elements, and signifies an interaction of these elements." (Lester F Ward, "Pure Sociology", 1903)

"Social structures are the products of social synergy, i.e., of the interaction of different social forces, all of which, in and of themselves, are destructive, but whose combined effect, mutually checking, constraining, and equilibrating one another, is to produce structures. The entire drift is toward economy, conservatism, and the prevention of waste. Social structures are mechanisms for the production of results, and the results cannot be secured without them. They are reservoirs of power." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"The true nature of the universal principle of synergy pervading all nature and creating all the different kinds of structure that we observe to exist, must now be made clearer. Primarily and essentially it is a process of equilibration, i.e., the several forces are first brought into a state of partial equilibrium. It begins in collision, conflict, antagonism, and opposition, and then we have the milder phases of antithesis, competition, and interaction, passing next into a modus vivendi, or compromise, and ending in collaboration and cooperation. […] The entire drift is toward economy, conservatism, and the prevention of waste." (James Q Dealey & Lester F Ward, "A Text-book of Sociology", 1905)

"One may generalize upon these processes in terms of group equilibrium. The group may be said to be in equilibrium when the interactions of its members fall into the customary pattern through which group activities are and have been organized. The pattern of interactions may undergo certain modifications without upsetting the group equilibrium, but abrupt and drastic changes destroy the equilibrium." (William F Whyte, "Street Corner Society", 1943)

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits' - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Only a modern systems approach promises to get the full complexity of the interacting phenomena - to see not only the causes acting on the phenomena under study, the possible consequences of the phenomena and the possible mutual interactions of some of these factors, but also to see the total emergent processes as a function of possible positive and/or negative feedbacks mediated by the selective decisions, or 'choices', of the individuals and groups directly involved." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"We may state as characteristic of modern science that this scheme of isolable units acting in one-way causality has proven to be insufficient. Hence the appearance, in all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc., which all signify that, in the last resort, we must think in terms of systems of elements in mutual interaction […]." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium.” (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms." (Charles J Krebs, "Ecology", 1972)

"An autopoietic system is organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components that: (a) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produce them and, (b) constitute it (the machine) as a concrete unity in the space in which they exist by specifying the topological domain of its realization as such a network." (Francisco Varela, "Principles of Biological Autonomy", 1979)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"The dynamics of any system can be explained by showing the relations between its parts and the regularities of their interactions so as to reveal its organization. For us to fully understand it, however, we need not only to see it as a unity operating in its internal dynamics, but also to see it in its circumstances, i.e., in the context to which its operation connects it. This understanding requires that we adopt a certain distance for observation, a perspective that in the case of historical systems implies a reference to their origin. This can be easy, for instance, in the case of man-made machines, for we have access to every detail of their manufacture. The situation is not that easy, however, as regards living beings: their genesis and their history are never directly visible and can be reconstructed only by fragments."  (Humberto Maturana, "The Tree of Knowledge", 1987)

"Unlike its predecessor, the new cybernetics concerns itself with the interaction of autonomous political actors and subgroups, and the practical and reflexive consciousness of the subjects who produce and reproduce the structure of a political community. A dominant consideration is that of recursiveness, or self-reference of political action both with regards to the expression of political consciousness and with the ways in which systems build upon themselves." (Peter Harries-Jones, The Self-Organizing Policy: An Epistemological Analysis of Political Life by Laurent Dobuzinskis, Canadian Journal of Political Science 21 (2), 1988)

"A system of variables is 'interrelated' if an action that affects or meant to affect one part of the system will also affect other parts of it. Interrelatedness guarantees that an action aimed at one variable will have side effects and long-term repercussions. A large number of variables will make it easy to overlook them." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"All dynamics arise from the interaction of just two types of feedback loops, positive (or self-reinforcing) and negative (or self-correcting) loops. Positive loops tend to reinforce or amplify whatever is happening in the system […] Negative loops counteract and oppose change." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"True systems thinking, on the other hand, studies each problem as it relates to the organization’s objectives and interaction with its entire environment, looking at it as a whole within its universe. Taking your organization from a partial systems to a true systems state requires effective strategic management and backward thinking." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The addition of new elements or agents to a particular system multiplies exponentially the number of connections or potential interactions among those elements or agents, and hence the number of possible outcomes. This is an important attribute of complexity theory." (Mark Marson, "What Are Its Implications for Educational Change?", 2008)

"Complexity theory embraces things that are complicated, involve many elements and many interactions, are not deterministic, and are given to unexpected outcomes. […] A fundamental aspect of complexity theory is the overall or aggregate behavior of a large number of items, parts, or units that are entangled, connected, or networked together. […] In contrast to classical scientific methods that directly link theory and outcome, complexity theory does not typically provide simple cause-and-effect explanations." (Robert E Gunther et al, "The Network Challenge: Strategy, Profit, and Risk in an Interlinked World", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

❄️Systems Thinking: On Scale-Free Networks (Quotes)

"[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In contrast to gravitation, interatomic forces are typically modeled as inhomogeneous power laws with at least two different exponents. Such laws (and exponential laws, too) are not scale-free; they necessarily introduce a characteristic length, related to the size of the atoms. Power laws also govern the power spectra of all kinds of noises, most intriguing among them the ubiquitous (but sometimes difficult to explain)." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In networks belonging to the second category, the winner takes all, meaning that the fittest node grabs all links, leaving very little for the rest of the nodes. Such networks develop a star topology, in which all nodes are connected to a central hub. In such a hub-and-spokes network there is a huge gap between the lonely hub and everybody else in the system. Thus a winner-takes-all network is very different from the scale-free networks we encountered earlier, where there is a hierarchy of hubs whose size distribution follows a power law. A winner-takes-all network is not scale-free. Instead there is a single hub and many tiny nodes. This is a very important distinction." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The first category includes all networks in which, despite the fierce competition for links, the scale-free topology survives. These networks display a fit-get-rich behavior, meaning that the fittest node will inevitably grow to become the biggest hub. The winner's lead is never significant, however. The largest hub is closely followed by a smaller one, which acquires almost as many links as the fittest node. At any moment we have a hierarchy of nodes whose degree distribution follows a power law. In most complex networks, the power law and the fight for links thus are not antagonistic but can coexist peacefully."(Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"At an anatomical level - the level of pure, abstract connectivity - we seem to have stumbled upon a universal pattern of complexity. Disparate networks show the same three tendencies: short chains, high clustering, and scale-free link distributions. The coincidences are eerie, and baffling to interpret." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"In a random network the loss of a small number of nodes can cause the overall network to become incoherent - that is, to break into disconnected subnetworks. In a scale-free network, such an event usually won’t disrupt the overall network because most nodes don’t have many links. But there’s a big caveat to this general principle: if a scale-free network loses a hub, it can be disastrous, because many other nodes depend on that hub." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

"Scale-free networks are particularly vulnerable to intentional attack: if someone wants to wreck the whole network, he simply needs to identify and destroy some of its hubs. And here we see how our world’s increasing connectivity really matters. Scientists have found that as a scale-free network like the Internet or our food-distribution system grows- as it adds more nodes - the new nodes tend to hook up with already highly connected hubs." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

06 August 2025

❄️Systems Thinking: On Problem Solving (Quotes)

"Even these humble objects reveal that our reality is not a mere collocation of elemental facts, but consists of units in which no part exists by itself, where each part points beyond itself and implies a larger whole. Facts and significance cease to be two concepts belonging to different realms, since a fact is always a fact in an intrinsically coherent whole. We could solve no problem of organization by solving it for each point separately, one after the other; the solution had to come for the whole. Thus we see how the problem of significance is closely bound up with the problem of the relation between the whole and its parts. It has been said: The whole is more than the sum of its parts. It is more correct to say that the whole is something else than the sum of its parts, because summing is a meaningless procedure, whereas the whole-part relationship is meaningful." (Kurt Koffka, "Principles of Gestalt Psychology", 1935)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits' - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957)

"Systems engineering is the name given to engineering activity which considers the overall behavior of a system, or more generally which considers all factors bearing on a problem, and the systems approach to control engineering problems is correspondingly that approach which examines the total dynamic behavior of an integrated system. It is concerned more with quality of performance than with sizes, capacities, or efficiencies, although in the most general sense systems engineering is concerned with overall, comprehensive appraisal." (Ernest F Johnson, "Automatic process control", 1958)

"[System dynamics] is an approach that should help in important top-management problems [...] The solutions to small problems yield small rewards. Very often the most important problems are but little more difficult to handle than the unimportant. Many [people] predetermine mediocre results by setting initial goals too low. The attitude must be one of enterprise design. The expectation should be for major improvement [...] The attitude that the goal is to explain behavior; which is fairly common in academic circles, is not sufficient. The goal should be to find management policies and organizational structures that lead to greater success." (Jay W Forrester, "Industrial Dynamics", 1961)

"Systems engineering is most effectively conceived of as a process that starts with the detection of a problem and continues through problem definition, planning and designing of a system, manufacturing or other implementing section, its use, and finally on to its obsolescence. Further, Systems engineering is not a matter of tools alone; It is a careful coordination of process, tools and people." (Arthur D. Hall, "Systems Engineering from an Engineering Viewpoint" In: Systems Science and Cybernetics. Vol.1 Issue.1, 1965)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"Only if mathematical rigor is adhered to, can systems problems be dealt with effectively, and so it is that the systems engineer must, at least, develop an appreciation for mathematical rigor if not also considerable mathematical competence." (A Wayne Wymore, "A Mathematical Theory of Systems Engineering", 1967)

"Solving a problem simply means representing it so as to make the solution transparent." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"It remains an unhappy fact that there is no best method for finding the solution to general nonlinear optimization problems. About the best general procedure yet devised is one that relies upon imbedding the original problem within a family of problems, and then developing relations linking one member of the family to another. If this can be done adroitly so that one family member is easily solvable, then these relations can be used to step forward from the solution of the easy problem to that of the original problem. This is the key idea underlying dynamic programming, the most flexible and powerful of all optimization methods." (John L Casti, "Five Golden Rules", 1995)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"It [system dynamics] focuses on building system dynamics models with teams in order to enhance team learning, to foster consensus and to create commitment with a resulting decision […] System dynamics can be helpful to elicit and integrate mental models into a more holistic view of the problem and to explore the dynamics of this holistic view […] It must be understood that the ultimate goal of the intervention is not to build a system dynamics model. The system dynamics model is a means to achieve other ends […] putting people in a position to learn about a messy problem … create a shared social reality […] a shared understanding of the problem and potential solutions … to foster consensus within the team [..]" (Jac A M Vennix, "Group Model Building: Facilitating Team Learning Using System Dynamics", 1996)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"True systems thinking, on the other hand, studies each problem as it relates to the organization’s objectives and interaction with its entire environment, looking at it as a whole within its universe. Taking your organization from a partial systems to a true systems state requires effective strategic management and backward thinking." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"System Thinking is a common concept for understanding how causal relationships and feedbacks work in an everyday problem. Understanding a cause and an effect enables us to analyse, sort out and explain how changes come about both temporarily and spatially in common problems. This is referred to as mental modelling, i.e. to explicitly map the understanding of the problem and making it transparent and visible for others through Causal Loop Diagrams (CLD)." (Hördur V. Haraldsson, "Introduction to System Thinking and Causal Loop Diagrams", 2004)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"A systems approach is one that focuses on the system as a whole, specifically linking value judgments (what is desired) and design decisions (what is feasible). A true systems approach means that the design process includes the 'problem' as well as the solution. The architect seeks a joint problem–solution pair and understands that the problem statement is not fixed when the architectural process starts. At the most fundamental level, systems are collections of different things that together produce results unachievable by the elements alone."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as 'requirements'  is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"DevOps is about team play and a collaborative problem-solving approach. If a service goes down, everyone must know what procedures to follow to diagnose the problem and get the system up and running again. Additionally, all of the roles and skills necessary to perform these tasks must be available and able to work together well. Training and effective collaboration are critical here." (Michael Hüttermann et al, "DevOps for Developers", 2013)

05 August 2025

❄️Systems Thinking: On Causal Maps (Quotes)

"Causal maps are representations of individuals (or groups) beliefs about causal relations. They include elements, with only two kinds of properties. The first property is 'relevance'. The second  is the possibility of being in one (of two) 'influence relationships' (positive or negative) with one (of three) strengths (weak. moderate, or strong)." (Kivia Markoczy & Jeff Goldberg, "A method for eliciting and comparing causal maps", 1995)

"Short-term memory can hold 7 ± 2 chunks of information at once. This puts a rather sharp limit on the effective size and complexity of a causal map. Presenting a complex causal map all at once makes it hard to see the loops, understand which are important, or understand how they generate the dynamics. Resist the temptation to put all the loops you and your clients have identified into a single comprehensive diagram." (John D Sterman, "Business Dynamics Systems Thinking and Modeling for a Complex World", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"A causal map is an abstract representation of the causal relationships among kinds of objects and events in the world. Such relationships are not, for the most part, directly observable, but they can often be accurately inferred from observations. This includes both observations of patterns of contingency and correlation among events as well as observations of the effects of experimental interventions. We can think of everyday theories and theory-formation processes as cognitive systems that allow us to recover an accurate causal map of the world." (Alison Gopnik & Clark Glymour, "Causal maps and Bayes nets: a cognitive and computational account of theory-formation" [in "The cognitive basis of science"], 2002)

"Causal mapping is a simple and useful technique for addressing situations where thinking - as an individual or as a group - matters. A causal map is a word-and-arrow diagram in which ideas and actions are causally linked with one another through the use of arrows. The arrows indicate how one idea or action leads to another. Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that people can know what to do in an area of concern, how to do it and why, because the arrows indicate the causes and consequences of an idea or action." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping is [...]  a technique for linking strategic thinking and acting, helping make sense of complex problems, and communicating to oneself and others what might be done about them. With practice, the use of causal mapping can assist you in moving from 'winging it' when thinking matters to a more concrete and rigorous approach that helps you and others achieve success in an easy and far more reliable way" (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that we can better understand an area of concern. Causal mapping also helps us know what to do about the issue, what it would take to do those things, and what we would like to get out of having done so. Causal mapping is therefore a particularly powerful technique for making sense of complex problems, linking strategic thinking and acting, and helping to communicate to others what might or should be done. " (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal maps include elements called nodes, which are allowed to have causal relationships of different strengths of positive or negative loading depicted with a number, usually in the range of from 1 (weak) to 3 (strong). The relationships of the nodes are depicted with arcs or links labeled with the assumed polarity and loading factor or strength of causality, Links with positive polarity refer to dependency (when A increases B increases proportionally to the loading factor) and negative to inverse dependency (when A increases, B decreases)." (Hannu Kivijärvi et al, "A Support System for the Strategic Scenario Process", Encyclopedia of Decision Making and Decision Support Technologies, 2008)

"Fifth principle: (a) in finding solutions for systemic problems do not be content with symptomatic solutions but look for systemic-structural levers that can produce the more incisive effect; (b) if there are several systemic levers, choose the most efficient, that which produces the maximum effects with the minimum effort; (c) to activate the chosen structural lever identify the most effective decisional lever (action variable) taking into account the time necessary to produce the desired effect; (d) the choice of structural and decisional levers, as well as the intensity of the actions to modify their values, must follow from a careful construction, interpretation and assessment of the system’s causal map." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"(1) The causal maps are only models of a world of variables and processes; (2) They are models suitable for depicting that world only if they represent a logical image; (3) A logical image is made up of a network of arrows that depict the cause and effect connections among the variables and processes in the world; this network cannot be in contradiction to the world; (4) This depiction of the world relates to the boundaries between the represented and the external systems; the causal maps always depict a portion of a vaster world;" (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"In constructing causal maps, whatever technique is adopted, there is always the problem of identifying or defining the system’s boundaries, either if we zoom in or broaden our perspective by zooming out." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"A Causal Map is hierarchical in structure (linking means to ends) and built with a focus on achieving goals. The process of creating the maps is ideally a group process and this in itself will add lots of value to a collective understanding of goals around EDI, what is required to achieve these and some of the potential challenges around this." (Nicola Morrill, "Supporting Your Efforts on Diversity", 2021)

❄️Systems Thinking: On Architecture (Quotes)

"Thus, the central theme that runs through my remarks is that complexity frequently takes the form of hierarchy, and that hierarchic systems have some common properties that are independent of their specific content. Hierarchy, I shall argue, is one of the central structural schemes that the architect of complexity uses." (Herbert A Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"From a functional point of view, mental models can be described as symbolic structures which permit people: to generate descriptions of the purpose of a system, to generate descriptions of the architecture of a system, to provide explanations of the state of a system, to provide explanations of the functioning of a system, to make predictions of future states of a system." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Most systems displaying a high degree of tolerance against failures are a common feature: Their functionality is guaranteed by a highly interconnected complex network. A cell's robustness is hidden in its intricate regulatory and metabolic network; society's resilience is rooted in the interwoven social web; the economy's stability is maintained by a delicate network of financial and regulator organizations; an ecosystem's survivability is encoded in a carefully crafted web of species interactions. It seems that nature strives to achieve robustness through interconnectivity. Such universal choice of a network architecture is perhaps more than mere coincidences." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The architecture of systems problem solving, to which this book is primarily devoted, should follow the general aims and principles of any architecture [...]. First of all, it should be user-oriented, i.e., it should cover all types of systems problems with which the envisioned users deal. Although the notion of the user should be given as broad interpretation as possible, the primary focus is on scientists, engineers, and professionals of all sorts. The various types of systems problems are thus predominantly extracted from systems problems recognized in various branches of science and engineering, as well as professions such as medicine, management, or law." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed., 2003)

The purpose of architecture is to identify and properly characterize those functions of an artifact under design, be it a building, a machine, or an expert system, that are necessary for achieving a given goal." (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed., 2003)

"The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape." (Marcus du Sautoy, "Symmetry: A Journey into the Patterns of Nature", 2008)

"A graph enables us to visualize a relation over a set, which makes the characteristics of relations such as transitivity and symmetry easier to understand. […] Notions such as paths and cycles are key to understanding the more complex and powerful concepts of graph theory. There are many degrees of connectedness that apply to a graph; understanding these types of connectedness enables the engineer to understand the basic properties that can be defined for the graph representing some aspect of his or her system. The concepts of adjacency and reachability are the first steps to understanding the ability of an allocated architecture of a system to execute properly." (Dennis M Buede, "The Engineering Design of Systems: Models and methods", 2009)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems."  (Albert-László Barabási, "Network Science", 2016)

"Good architecture should be a projection of life itselfand that implies an intimate knowledge ofbiological, social, technical and artistic problems." (Walter Gropius)

30 June 2025

🏷️Knowledge Representation: On Idealization (Quotes)

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our ideas and prevent our attention from wandering owing to the difficulty of keeping a long chain of syllogisms in our minds, it is excusable if we are apt to forget that we are not in reality reasoning about the objects in the figure, but about objects which ore their idealizations, and of which the objects in the figure are only an imperfect representation. Even if we only visualize, we see the images of more or less gross physical objects, in which various qualities irrelevant for our specific purpose are not entirely absent, and which are at best only approximate images of those objects about which we are reasoning." (Ernest W Hobson, "Squaring the Circle", 1913)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Through modeling, scientists manipulate symbols with meanings to represent an environment with structure. Such manipulations take place to fulfill a human need, solve a problem, or create a product. When constructing a model, one works in the cognitive space of ideas. Models are used to encapsulate, highlight, replicate or represent patterns of events and the structures of things. Of course, no model provides an exact duplication of the subject matter being modeled. Details are hidden, features are skewed, and certain properties are emphasized. Models are abstract and idealized. As an abstraction, a model omits some features of the subject matter, while retaining only significant properties. As an idealization, a model depicts a subject's properties in a more perfect form." (Daniel Rothbart [Ed.], "Modeling: Gateway to the Unknown", 2004)

"The intent of these representations is to capture the relevant characteristics of reality, which may overlap but are not identical in each case. The engineer has to ascertain what those are, and then incorporate appropriate assumptions and simplifications accordingly. Two common strategies are abstraction, which involves neglecting certain aspects of reality in order to gain a better understanding of the remaining aspects; and idealization, which involves replacing a complicated and/or complex aspect of reality with a simplified version." (Jon A Schmidt, "Representation and Reality", Structure [magazine], 2015)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

🦋Science: On Trial and Error (Quotes)

"The one lesson that comes out of all our theorizing and experimenting is that there is only one really scientific progressive method; and that is the method of trial and error." (George B Shaw, "The Doctor's Dilemma: Preface on Doctors", 1909)

"There are many men now living who were in the habit of using the age-old expression: 'It is as impossible as flying.' The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Dissent, New State Ice Co. v. Liebmann, 285 U.S. 262", 1932)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"But I believe that there is no philosophical high-road in science, with epistemological signposts. No, we are in a jungle and find our way by trial and error, building our road behind us as we proceed. We do not find signposts at cross-roads, but our own scouts erect them, to help the rest." (Max Born, "Experiment and Theory in Physics", 1943)

"The method of learning by trial and error - of learning from our mistakes - seems to be fundamentally the same whether it is practised by lower or by higher animals, by chimpanzees or by men of science." (Karl Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"The difference between the amoeba and Einstein is that, although both make use of the method of trial and error elimination, the amoeba dislikes erring while Einstein is intrigued by it [...]" (Karl R Popper, "Objective Knowledge: An Evolutionary Approach", 1972) 

"Science progresses by trial and error, by conjectures and refutations. Only the fittest theories survive." (Alan Chalmers, "What Is This Thing Called Science?", 1976)

"The great revolutions in science are almost always the result of unexpected intuitive leaps. After all, what is science if not the posing of difficult puzzles by the universe? Mother Nature does something interesting, and challenges the scientist to figure out how she does it. In many cases the solution is not found by exhaustive trial and error […] or even by a deduction based on the relevant knowledge." (Martin Gardner, "Aha! Insight", 1978)

"I believe people can solve complex problems eventually. By repeated trial and error they will get there; but they need a long time. At this point I agree with Herbert Simon. People do not learn immediately, as those rational expectations models seem to imply. I don't believe that. The statement that assumptions do not matter is nonsense. It is funny. Yes, I assume people are consistent in their behavior. I assume that not because I believe everybody actually is, but because I believe, on the average, you do not get too far from it." (Franco Modigliani, "Conversations with Economists", 1983)

"Science usually amounts to a lot more than blind trial and error. Good statistics consists of much more than just significance tests; there are more sophisticated tools available for the analysis of results, such as confidence statements, multiple comparisons, and Bayesian analysis, to drop a few names. However, not all scientists are good statisticians, or want to be, and not all people who are called scientists by the media deserve to be so described." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Whatever humans have learned had to be learned as a consequence only of trial and error experience. Humans have learned only through mistakes." (R Buckminster Fuller, "Intuition", 1983)

"Growth is a process of experimentation, a series of trials, errors, and occasional victories. The failed experiments are as much as part of the process as the experiments that work." (Chérie Carter-Scott, "If Life Is a Game, These Are the Rules", 1998)

"The natural as well as the social sciences always start from problems, from the fact that something inspires amazement in us, as the Greek philosophers used to say. To solve these problems, the sciences use fundamentally the same method that common sense employs, the method of trial and error. To be more precise, it is the method of trying out solutions to our problem and then discarding the false ones as erroneous. This method assumes that we work with a large number of experimental solutions. One solution after another is put to the test and eliminated." (Karl R Popper, "All Life is Problem Solving", 1999)

"We can simplify the relationships between fragility, errors, and antifragility as follows. When you are fragile, you depend on things following the exact planned course, with as little deviation as possible - for deviations are more harmful than helpful. This is why the fragile needs to be very predictive in its approach, and, conversely, predictive systems cause fragility. When you want deviations, and you don’t care about the possible dispersion of outcomes that the future can bring, since most will be helpful, you are antifragile. Further, the random element in trial and error is not quite random, if it is carried out rationally, using error as a source of information. If every trial provides you with information about what does not work, you start zooming in on a solution - so every attempt becomes more valuable, more like an expense than an error. And of course you make discoveries along the way." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

❄️Systems Thinking: On Idealization (Quotes)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"[…] if a system is sufficiently complicated, the time it takes to return near a state already visited is huge (think of the hundred fleas on the checkerboard). Therefore if you look at the system for a moderate amount of time, eternal return is irrelevant, and you had better choose another idealization." (David Ruelle, "Chance and Chaos", 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Cellular automata (CA) are idealizations of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states." (Andreas Schadschneider et al, "Vehicular Traffic II: The Nagel–Schreckenberg Model", 2011)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

28 March 2025

🏷️Knowledge Representation: On Causal Maps (Quotes)

 "[…] learning consists not in stimulus-response connections but in the building up in the nervous system of sets which function like cognitive maps […] such cognitive maps may be usefully characterized as varying from a narrow strip variety to a broader comprehensive variety." (Edward C Tolman, "Cognitive maps in rats and men", 1948)

"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"The concepts a person uses are represented as points, and the causal links between these concepts are represented as arrows between these points. This gives a pictorial representation of the causal assertions of a person as a graph of points and arrows. This kind of representation of assertions as a graph will be called a cognitive map. The policy alternatives, all of the various causes and effects, the goals, and the ultimate utility of the decision maker can all be thought of as concept variables, and represented as points in the cognitive map. The real power of this approach ap pears when a cognitive map is pictured in graph form; it is then relatively easy to see how each of the concepts and causal relation ships relate to each other, and to see the overall structure of the whole set of portrayed assertions." (Robert Axelrod, "The Cognitive Mapping Approach to Decision Making" [in "Structure of Decision: The Cognitive Maps of Political Elites"], 1976)

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"A fuzzy cognitive map or FCM draws a causal picture. It ties facts and things and processes to values and policies and objectives. And it lets you predict how complex events interact and play out. [...] Neural nets give a shortcut to tuning an FCM. The trick is to let the fuzzy causal edges change as if they were synapses in a neural net. They cannot change with the same math laws because FCM edges stand for causal effect not signal flow. We bombard the FCM nodes with real data. The data state which nodes are on or off and to which degree at each moment in time. Then the edges grow among the nodes."  (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Under the label 'cognitive maps', mental models have been conceived of as the mental representation of spatial aspects of the environment. A mental model, in this sense, comprises the topology of an area, including relevant districts, landmarks, and paths." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems."  (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"A causal map is an abstract representation of the causal relationships among kinds of objects and events in the world. Such relationships are not, for the most part, directly observable, but they can often be accurately inferred from observations. This includes both observations of patterns of contingency and correlation among events as well as observations of the effects of experimental interventions. We can think of everyday theories and theory-formation processes as cognitive systems that allow us to recover an accurate causal map of the world." (Alison Gopnik & Clark Glymour, "Causal maps and Bayes nets: a cognitive and computational account of theory-formation" [in "The cognitive basis of science"], 2002)

"Causal mapping is a technique that is used to elicit and represent domain knowledge of experts in the form of a graphical network called a causal map. A causal map (also called an influence diagram or a cause map) is a directed graph in which causal concepts (or nodes) represent the important variables that make up a domain. Causal connections are the directed arrows that connect these concepts to represent causal relationships between the variables." (S Nadkarni, Aggregated causal maps: An approach to elicit and aggregate the knowledge of multiple experts, 2003) 

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

24 March 2025

🏷️Knowledge Representation: On Mind Maps (Quotes)

"A mind map harnesses the full range of cortical skills—word, image, number, logic, rhythm, color, and spatial awareness - in a single, uniquely powerful technique. In doing so, it gives you the freedom to roam the infinite expanse of your brain." (Tony Buzan, Barry Buzan, "The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain's Untapped Potential", 1996)

"Delay time, the time between causes and their impacts, can highly influence systems. Yet the concept of delayed effect is often missed in our impatient society, and when it is recognized, it’s almost always underestimated. Such oversight and devaluation can lead to poor decision making as well as poor problem solving, for decisions often have consequences that don’t show up until years later. Fortunately, mind mapping, fishbone diagrams, and creativity/brainstorming tools can be quite useful here." (Stephen G Haines, "The Manager's Pocket Guide to Strategic and Business Planning", 1998)

"An effective mind map is one that works for you and therefore it is your tailoring and your emphasis, images, colours, codes and style that will determine its effectiveness. Try to develop the habit of taking down all your notes in mind map format. If you are required to give presentations, do this from a mind map. When you are at meetings, take down the minutes in mind map layout and just notice the difference in your ability to retain exactly what happened at that meeting and compare it with your usual logical/analytical method of recording minutes." (Peter F Haddon, Mastering Personal and Interpersonal Skills, 1999)

"Mind mapping is a technique whereby information is summarised in a form of pictorial representation which depends very much on the creativity of the individual involved. The idea is that when information is pictured in colourful word associations backed up by sketches or even stick drawings of the key words, it is far more easily remembered, much like when looking at a photograph you can recall in detail the happenings that led up to and followed the incident." (Peter F Haddon, Mastering Personal and Interpersonal Skills, 1999)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Mind Mapping uses the full range of the brain's abilities, placing an image in the center of the page in order to facilitate memorization and the creative generation of ideas, and subsequently branches out in associative networks that mirror externally the brain's internal structures. By using this approach, the preparation of speeches can be reduced in time from days to minutes; problems can be solved both more comprehensively and more rapidly; memory can be improved from absent to perfect; and creative thinkers can generate a limitless number of ideas rather than a truncated list." Marshall Goldsmith et al, "The Many Facets of Leadership", 2002)

"[a mind map is a] "visual note-taking process that includes key words and pictures illustrating the relationships among concepts." (Ruth Colvin Clark, Chopeta Lyons, "Graphics for Learning: Proven guidelines for planning, designing, and evaluating visuals in training materials" 2nd ed., 2011)

"Data visualizations can also play a critical role when it is time to disseminate and communicate evaluation findings. Data visualization engages and supports program stakeholders by increasing their capacity to understand data and participate in the evaluation process. Collaboratively developed mind maps, logic models, and graphic illustrations can facilitate understanding of the findings and their implications by depicting a program’s most important activities, outcomes, and ultimate goal in a concise and clear manner. Well-designed interactive visualizations for reporting and community engagement help stakeholders answer questions of import within context and place engaged stakeholders in the driver’s seat in terms of defining variables and interpreting results." (Tarek Azzam et al, "Data Visualization and Evaluation", "Data visualization, part 1: New Directions for Evaluation", 139], 2013)

"Paradoxically one of the greatest advantages of mind maps is that they are seldom needed again. The very act of constructing a map is itself so effective in fixing ideas in memory that very often a whole map can recalled without going back to it at all. A mind map is so strongly visual and uses so many of the natural functions of memory that frequently it can be simply read off in the mind's eye." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013)

"With the adoption of a more schematic and abstract construct, deprived of realistic arboreal features, a tree diagram could sometimes be rotated along its axis and depicted horizontally, with its ranks arranged most frequently from left to right. Horizontal trees probably emerged as an alternative to vertical trees to address spatial constraints and layout requirements, but they also provide unique advantages. The nesting arrangement of horizontal trees resembles the grammatical construct of a sentence, echoing a natural reading pattern that anyone can relate to. This alternative scheme was often deployed on facing pages of a manuscript, with the root of the tree at the very center, creating a type of mirroring effect that is still found in many digital and interactive executions. Horizontal trees have proved highly efficient for archetypal models such as classification trees, flow charts, mind maps, dendrograms, and, notably, in the display of files on several software applications and operating systems." (Manuel Lima, "The Book of Trees: Visualizing Branches of Knowledge", 2014)

"Essentially, a mind map is a type of node-link diagram in which the nodes represent concepts and the links represent relationships between concepts. The central idea to be explored is placed in the middle of the page and it is expanded out from there. Usually mind maps are drawn as tree structures with no cross links between branches, but this can be restrictive." (Colin Ware, "Information Visualization: Perception for Design" 4th Ed., 2021)

"The educational use of mind maps and concept maps would seem to fit well with constructivist theory. To construct such a map, students must actively draw out links between various concepts as they understand them. The problem is that the cognitive engagement tends to be somewhat superficial for mind maps, since it does not require that students think deeply about the nature of the links." (Colin Ware, "Information Visualization: Perception for Design" 4th Ed., 2021)

"Idea mapping offers the power to represent qualitative data, describe relationships, and enable one to see the 'big picture'. Further, mapping allows us to represent data in a way that facilitates the conceptualizing of its meaning. It provides a 'map', which makes it possible to observe macrophenomena, discover trends, and generate creative options. Idea mapping makes it possible to represent multiple dimensions of a situation without losing sight of any of its parts; it is an efficient way to manage an overwhelming amount of qualitative information. Finally, it offers a way to present information to clients in a graphic form that is both easy to understand and data rich. Often, an entire strategic plan can be represented in one map." (Terry Moore)

Related Posts Plugin for WordPress, Blogger...